K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2022

Xét ΔPMN có PM=PN

nen ΔPMN cân tại P

=>góc PMN=góc PNM

P M N

Ta có: ∆MNP có PM=PN

=>∆MNP cân tại P

=> góc PMN=góc PNM (dpcm)

18 tháng 10 2020

Cách 1: 

Xét ΔMNP có : 

PM = PN ( gt ) 

⇒ ΔMNP cân.

⇒ ^PMN = ^PNM ( t/c Δcân )

Cách 2: 

Từ P kẻ PI là phân giác ^MPN

Vì ΔMPN cân (PM = PN)

=> PI là phân giác đồng thời là trung trực

=> IM = IN

Xét ΔMPI và ΔNPI có:

   PM = PN (gt)

   P1 = P2 (PI là pg)

   PI cạnh chung

=> ΔMPI = ΔNPI (c.g.c)

=> ^PMN = ^PNM ( 2 góc tg ứng)

18 tháng 10 2020

P M N A 1 2

Cách 1: Vẽ PA là tia phân giác của \(\widehat{P}\)

Xét  \(\Delta PMA\)và \(\Delta PNA\)có:

PM=PN (gt)

\(\widehat{MPA}\)=\(\widehat{NPA}\)(vì PA là tia phân giác của \(\widehat{P}\))

PA là cạnh chung

=>\(\Delta MPA=\Delta NPA\)(c.g.c)

=>\(\widehat{PMN}=\widehat{PNM}\)(hai góc tương ứng)

P M N A

Cách 2: Vẽ A là trung điểm của MN

Xét \(\Delta PMA\)và \(\Delta PNA\)có:

MP=NP (gt)

MA=NA (vì A là trung điểm của MN)

PA là cạnh chung

=>\(\Delta PMA=\Delta PNA\)(c.c.c)

=>\(\widehat{PMN}=\widehat{PNM}\)(hai góc tương ứng)

Vậy .....

6 tháng 11 2021

Xét ΔMNP có : 

PM = PN ( gt ) 

⇒ ΔMNP cân.

⇒ ^PMN = ^PNM ( t/c Δcân )

13 tháng 8 2015

Tam giác ABC vuông tại A \(\Rightarrow\) góc B + góc C = 90 độ

Tam giác ABH vuông tại H \(\Rightarrow\) góc B + góc BAH = 90 độ

Suy ra góc C = góc BAH (cùng phụ góc B)

9 tháng 12 2021

Kẻ phân giác IH của \(\widehat{BIC}\)

Ta có \(\widehat{ABC}+\widehat{ACB}=180^0-\widehat{BAC}=120^0\)

Mà BI,CI là phân giác \(\widehat{ABC};\widehat{ACB}\Rightarrow\widehat{IBC}+\widehat{ICB}=\dfrac{1}{2}\left(\widehat{ABC}+\widehat{ACB}\right)=60^0\)

Xét tam giác IBC: \(\widehat{BIC}=180^0-\left(\widehat{IBC}+\widehat{ICB}\right)=120^0\)

\(\Rightarrow\widehat{BIH}=\widehat{CIH}=\dfrac{1}{2}\widehat{BIC}=60^0\)

Lại có \(\widehat{BIE}=\widehat{DIC}=180^0-\widehat{BIC}=60^0\) (kề bù)

Do đó \(\widehat{BIH}=\widehat{CIH}=\widehat{BIE}=\widehat{DIC}\)

\(\left\{{}\begin{matrix}\widehat{BIH}=\widehat{BIE}\\BI\text{ chung}\\\widehat{IBE}=\widehat{IBH}\end{matrix}\right.\Rightarrow\Delta BEI=\Delta BHI\left(g.c.g\right)\\ \Rightarrow EI=HI\left(1\right)\\ \left\{{}\begin{matrix}\widehat{CIH}=\widehat{DIC}\\CI\text{ chung}\\\widehat{HIC}=\widehat{DIC}\end{matrix}\right.\Rightarrow\Delta CDI=\Delta CHI\left(g.c.g\right)\\ \Rightarrow DI=HI\left(2\right)\\ \left(1\right)\left(2\right)\Rightarrow IE=ID\)

30 tháng 1 2020

a) Từ \(\Delta ABC\)cân tại A, \(\Rightarrow\widehat{B}=\widehat{C}=75^o\)

 \(\Rightarrow\widehat{A}=180^o-\left(\widehat{B}+\widehat{C}\right)\)

\(\Rightarrow\widehat{A}=180^o-\left(75^o+75^o\right)\)

\(\Rightarrow\widehat{A}=30^o\)

b) Từ \(\Delta MNP\)cân tại P, \(\Rightarrow\widehat{M}=\widehat{N}=\frac{180^o-\widehat{P}}{2}=\frac{80^o}{2}=40^o\)

c) Ta có: \(NP^2=13^2=169\)(1)

\(MN^2+MP^2=5^2+12^2=25+144=169\)(2)

Từ (1) và (2) suy ra: \(NP^2=MN^2+MP^2\)

\(\Rightarrow\Delta MNP\)vuông (theo định lí Pytago)

Happy new year!!!