K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2015

\(A=\frac{\frac{1}{2}\left(2x^2+4x+9\right)-\frac{11}{2}}{2x^2+4x+9}=\frac{1}{2}-\frac{11}{2}.\frac{1}{2x^2+4x+9}\)

Nhận xét: 2x+ 4x + 9 = 2.(x+ 2x + 1) + 7 = 2.(x + 1)+ 7 > 7 với mọi x

=> \(\frac{1}{2x^2+4x+9}\le\frac{1}{7}\)=> \(-\frac{11}{2}.\frac{1}{2x^2+4x+9}\ge\frac{-11}{2}.\frac{1}{7}=-\frac{11}{14}\)

=> A > \(\frac{1}{2}-\frac{11}{14}=-\frac{2}{7}\) 

Vậy A nhỏ nhất bằng -2/7 khi  x+ 1 = 0  => x = -1

6 tháng 11 2015

bạn đưa ra là

x2+2x-1=2x2+4x+9

rồi chuyển vế là xong

​mình cũng không bik có đúng không

​mik mới học lớp 7 thôi

 

NV
3 tháng 10 2020

\(A=\frac{1}{4}\left(x+2\right)^2-2\ge-2\)

\(A_{min}=-2\) khi \(x=-2\)

Với 2 câu B, C cần kiến thức lớp 9 để làm:

\(Bx^2+2Bx+3B=x^2-2x+2\)

\(\Leftrightarrow\left(B-1\right)x^2+2\left(B+1\right)x+3B-2=0\)

\(\Delta'=\left(B+1\right)^2-\left(B-1\right)\left(3B-2\right)\ge0\)

\(\Leftrightarrow2B^2-7B+1\le0\Rightarrow\frac{7-\sqrt{41}}{4}\le B\le\frac{7+\sqrt{41}}{4}\)

\(B_{min}=\frac{7-\sqrt{41}}{4}\) khi \(x=\frac{\sqrt{41}-1}{4}\)

\(2Cx^2+4Cx+9C=x^2-2x-1\)

\(\Leftrightarrow\left(2C-1\right)x^2+2\left(2C+1\right)x+9C+1=0\)

\(\Delta'=\left(2C+1\right)^2-\left(2C-1\right)\left(9C+1\right)\ge0\)

\(\Leftrightarrow14C^2-11C-2\le0\Rightarrow\frac{11-\sqrt{233}}{28}\le C\le\frac{11+\sqrt{233}}{28}\)

\(C_{min}=\frac{11-\sqrt{233}}{28}\) khi \(x=\frac{\sqrt{233}-11}{8}\)

16 tháng 10 2016

Bài 1: Tìm x: (2x-6)^3 + (5-x)^3 + (1-x)^3 = 0

​Bài 2: Tìm GTNN :​

A= x^2 -2x -4

B= x^2 -x +5

C= 4x^2 +2x -9

D= 2x^2 -4x +7

Giúp tớ với, tớ đang cần gấp

NV
5 tháng 4 2021

a.

\(A=\dfrac{2013}{x^2}-\dfrac{2}{x}+1=2013\left(\dfrac{1}{x}-\dfrac{1}{2013}\right)^2+\dfrac{2012}{2013}\ge\dfrac{2012}{2013}\)

Dấu "=" xảy ra khi \(x=2013\)

b.

\(B=\dfrac{4x^2+2-4x^2+4x-1}{4x^2+2}=1-\dfrac{\left(2x-1\right)^2}{4x^2+2}\le1\)

\(B_{max}=1\) khi \(x=\dfrac{1}{2}\)

\(B=\dfrac{-2x^2-1+2x^2+4x+2}{4x^2+2}=-\dfrac{1}{2}+\dfrac{\left(x+1\right)^2}{2x^2+1}\ge-\dfrac{1}{2}\)

\(B_{max}=-\dfrac{1}{2}\) khi \(x=-1\)

5 tháng 4 2021

em cảm ơn ạ

17 tháng 9 2016

Ta có \(\frac{9+4x^2+4x^3+x^4}{x^2+2x}=\frac{x^2\left(x^2+2\right)+2x\left(x^2+2x\right)+9}{x^2+2x}\)

= x2 + 2x + \(\frac{9}{x^2+2x}\)

= (\(\frac{3}{\sqrt{x^2+2x}}-\sqrt{x^2+2x}\))2 + 6 \(\ge6\)

17 tháng 9 2016

\(\frac{9+x^2\left(x^2+2x\right)+2x\left(x^2+2x\right)}{x^2+2x}\)

Nha a viết láu táu nên thiếu mất x

12 tháng 9 2019

a. 

\(A=\frac{x^2+x^2-2x+1}{x^2}=1+\frac{\left(x-1\right)^2}{x^2}\ge1\)

Giá trị nhỏ nhất của A là 1 khi và chỉ khi x-1=0 <=> x=1

b. \(B=\frac{2014x^2+4x^2-4x+1}{x^2}=2014+\frac{\left(2x-1\right)^2}{x^2}\ge2014\)

Giá trị nhỏ nhất của B là 2014 khi và chỉ khi 2x-1=0 <=> x=1/2