K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2018

Để hàm số \(y=\left(m^2-5m+6\right)x+\left(m^2+mn-6n\right)+3\) là hàm số bậc nhất thì a=\(m^2-5m+6\ne0\Leftrightarrow m^2-2m-3m+6\ne0\Leftrightarrow m\left(m-2\right)-3\left(m-2\right)\ne0\Leftrightarrow\left(m-2\right)\left(m-3\right)\ne0\Leftrightarrow\)\(\left[{}\begin{matrix}m-2\ne0\\m-3\ne0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}m\ne2\\m\ne3\end{matrix}\right.\)

Vậy \(m\ne2\) hoặc \(m\ne3\) thì hàm số \(y=\left(m^2-5m+6\right)x+\left(m^2+mn-6n\right)+3\) là hàm số bậc nhất

21 tháng 5 2019

11 tháng 8 2018

Chọn B.

18 tháng 2 2018

Hàm số y   =   ( m 2   –   1 ) x   +   5 m là hàm số đồng biến khi  m 2   –   1   >   0

⇔   ( m   –   1 )   ( m   +   1 )   >   0

TH1: m − 1 > 0 m + 1 > 0 ⇔ m > 1 m > − 1 ⇔ m > 1  

TH2:   m − 1 < 0 m + 1 < 0 ⇔ m < 1 m < − 1 ⇔ m < − 1

Vậy  m > 1 m < − 1

Đáp án cần chọn là: D

5 tháng 11 2023

a) Để hàm số đã cho là hàm số bậc nhất thì:

3m + 5 ≠ 0

⇔ 3m ≠ -5

⇔ m ≠ -5/3

b) Để hàm số đã cho là hàm số bậc nhất thì:

2m² + 3 ≠ 0

⇔2m² ≠ -3 (luôn đúng)

Vậy m ∈ R

c) Để hàm số đã cho là hàm số bậc nhất thì:

m² - 3m = 0 và 3 - m ≠ 0

*) m² - 3m = 0

⇔ m(m - 3) = 0

⇔ m = 0 hoặc m - 3 = 0

**) m - 3 = 0

⇔ m = 3

*) 3 - m ≠ 0

⇔ m ≠ 3

Vậy m = 0 thì hàm số đã cho là hàm số bậc nhất

a: Để đây là hàm số bậc nhất thì 3m+5<>0

=>3m<>-5

=>\(m< >-\dfrac{5}{3}\)

b: Để đây là hàm số bậc nhất thì \(2m^2+3\ne0\)

mà \(2m^2+3>=3>0\forall m\)

nên \(m\in R\)

c: Để đây là hàm số bậc nhất thì \(\left\{{}\begin{matrix}m^2-3m=0\\3-m< >0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m\left(m-3\right)=0\\m< >3\end{matrix}\right.\Leftrightarrow m=0\)

9 tháng 11 2023

Bài 1

ĐKXĐ: m ≠ 0 và m ≠ -1/2

a) Để hai đường thẳng cắt nhau thì:

3m ≠ 2m + 1

⇔ m ≠ 1

Vậy m ≠ 0; m ≠ -1/2 và m ≠ 1 thì hai đường thẳng đã cho cắt nhau

b) Để hai đường thẳng song song thì:

3m = 2m + 1

⇔ m = 1 (nhận)

Vậy m = 1 thì hai đường thẳng đã cho song song

9 tháng 11 2023

Bài 2

ĐKXĐ: m ≠ 0 và m ≠ -1/2

a) Để hai đường thẳng đã cho cắt nhau thì:

3m ≠ 2m + 1

⇔ m ≠ 1 

Vậy m ≠ 0; m ≠ -1/2; m ≠ 1 thì hai đường thẳng đã cho cắt nhau

b) Để hai đường thẳng trùng nhau thì:

3m = 2m + 1 và 4 - m² = 3

*) 3m = 2m + 1

⇔ m = 1 (nhận)  (*)

*) 4 - m² = 3

⇔ m² = 4 - 3

⇔ m² = 1

⇔ m = 1 (nhận) hoặc m = -1 (nhận)  (**)

Từ (*) và (**) ⇒ m = 1 thì hai đường thẳng đã cho trùng nhau

c) Để hai đường thẳng đã cho song song thì:

3m = 2m + 1 và 4 - m² ≠ 3

*) 3m = 2m + 1

⇔ m = 1 (nhận) (1)

*) 4 - m² ≠ 3

⇔ m² ≠ 1

⇔ m ≠ 1 (nhận) và m ≠ -1 (nhận) (2)

Từ (1) và (2) ⇒ Không tìm được m để hai đường thẳng đã cho song song

d) Để hai đường thẳng vuông góc thì:

3m.(2m + 1) = -1

⇔ 6m² + 3m + 1 = 0 (3)

Ta có:

6m² + 3m + 1 = 6.(m² + m/2 + 1/6)

= 6.(m² + 2.m.1/4 + 1/16 + 5/48)

= 6(m + 1/4)² + 5/8 > 0 (với mọi m)

⇒ (3) là vô lý

Vậy không tìm được m để hai đường thẳng đã cho vuông góc

a: Để (d) là hàm số bậc nhất thì \(m^2+3m-4< >0\)

=>\(\left(m+4\right)\left(m-1\right)< >0\)

=>\(m\notin\left\{-4;1\right\}\)

b: Để (d) đồng biến thì \(m^2+3m-4>0\)

=>(m+4)(m-1)>0

=>m>1 hoặc m<-4

c: Để (d) nghịch biến thì m^2+3m-4<0

=>(m+4)(m-1)<0

=>-4<m<1

# Bài 24. Cho hai đường thẳng (D): y = (m − 2)x + 1& (D0 ) : y = m2 x − 2x + m. 1) Tìm m để (D) là hàm số bậc nhất? Hàm số đồng biến? Hàm số nghịch biến? 2) Tìm m biết (D) // (D’). 3) Với m tìm được ở câu 2 hãy a) Vẽ đồ thị (D); b) Tính góc tạo bởi đường thẳng (D) và trục Ox; c) Tính chu vi và diện tích tam giác được tạo bởi đường thẳng (D), Ox, Oy; d) Tính khoảng cách từ gốc tọa độ O...
Đọc tiếp

# Bài 24. Cho hai đường thẳng (D): y = (m − 2)x + 1& (D0 ) : y = m2 x − 2x + m. 1) Tìm m để (D) là hàm số bậc nhất? Hàm số đồng biến? Hàm số nghịch biến? 2) Tìm m biết (D) // (D’). 3) Với m tìm được ở câu 2 hãy a) Vẽ đồ thị (D); b) Tính góc tạo bởi đường thẳng (D) và trục Ox; c) Tính chu vi và diện tích tam giác được tạo bởi đường thẳng (D), Ox, Oy; d) Tính khoảng cách từ gốc tọa độ O đến đường thẳng (D). 4) Cho hai đường thẳng (d1) y = 2x−8 và (d2) y = −x+1. Tìm m để đường thẳng (D),(d1),(d2) đồng quy. 5) Tìm m để (D) và (D’) cắt nhau tại một điểm nằm trên trục hoành. 6) Chứng minh rằng đường thẳng (D) luôn đi qua một điểm cố định khi m thay đổi. 7) Tìm m sao cho đường thẳng (D) tạo với hai trục Ox, Oy một tam giác có diện tích bằng 2. 8) Tìm m sao cho khoảng cách từ gốc tọa độ O đến đường thẳng (D) đạt giá trị lớn nhất.

1
17 tháng 11 2023

1: (D): y=(m-2)x+1

(D'): \(y=m^2x-2x+m=x\left(m^2-2\right)+m\)

Để (D) là hàm số bậc nhất thì m-2<>0

=>m<>2

Để (D): y=(m-2)x+1 đồng biến trên R thì m-2>0

=>m>2

Để (D): y=(m-2)x+1 nghịch biến trên R thì m-2<0

=>m<2

2: Để (D)//(D') thì \(\left\{{}\begin{matrix}m^2-2=m-2\\m< >1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m^2-m=0\\m< >1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m\left(m-1\right)=0\\m< >1\end{matrix}\right.\)

=>m=0

3:

a: Khi m=0 thì (D): y=(0-2)x+1=-x+1

loading...

b: Gọi \(\alpha\) là góc tạo bởi (D) với trục Ox

Ta có: a=-1

nên \(tan\left(180^0-\alpha\right)=-1\)

=>\(180-\alpha=135^0\)

=>\(\alpha=45^0\)

4:

Tọa độ giao điểm của (d1) và (d2) là:

\(\left\{{}\begin{matrix}2x-8=-x+1\\y=2x-8\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3x=9\\y=2x-8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2\cdot3-8=-2\end{matrix}\right.\)

Thay x=3 và y=-2 vào (D), ta được:

\(3\left(m-2\right)+1=-2\)

=>3(m-2)=-3

=>m-2=-1

=>m=1

5: Để (D) cắt (D') tại một điểm trên trục hoành thì

\(\left\{{}\begin{matrix}m-2< >m^2-2\\-\dfrac{1}{m-2}=\dfrac{-m}{m^2-2}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m^2-m\ne0\\\dfrac{1}{m-2}=\dfrac{m}{m^2-2}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m\left(m-1\right)\ne0\\m^2-2=m^2-2m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\notin\left\{0;1\right\}\\-2m=-2\end{matrix}\right.\)

=>\(m\in\varnothing\)

6: (D): y=(m-2)x+1

=>y=mx-2x+1

Điểm mà (D) luôn đi qua có tọa độ là:

\(\left\{{}\begin{matrix}x=0\\y=-2x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=-2\cdot0+1=1\end{matrix}\right.\)