tim so tu nhien n biet trong 3 so 6;16;n bat ki so nao cung la tich cua 2 so con lai
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 34 và 35
b) 12, 13 và 14
c) 14, 16 và 18
d) 63, 65 và 67
e) 50
1.
Gọi 2 số tự nhiên bất kì là a ; b ( a ; b ϵ N* ) \(\left(1\right)\)
Theo đầu bài ta có : \(\left(a;b\right)=36\)
→ a chia hết cho 36 và b chia hết cho 36
→ \(a=36m\) và \(b=36n\)
Mà a + b = 432 → \(36m+36n=432\)
→ \(m+n=12\) \(\left(2\right)\)
Từ \(\left(1\right)\left(2\right)\) ta có bảng sau :
\(m\) | \(11\) | \(7\) |
\(n\) | \(1\) | \(5\) |
\(a\) | \(396\) | \(252\) |
\(b\) | \(36\) | \(180\) |
Vậy \(\left(a;b\right)=\left\{\left(396;36\right);\left(36;396\right);\left(252;180\right);\left(180;252\right)\right\}\)
2.
Gọi 2 số cần tìm là a và b ( a , b ϵ N )
Theo đầu bài ta có : \(\left(a,b\right)=6\)
→ \(a=6m\) và \(b=6n\) ( m;n ϵ N và (m;n)= 1) \(\left(1\right)\)
Lại có : \(a+b=66\)
→ \(6m+6n=66\)
→ \(m+n=11\left(2\right)\)
Từ \(\left(1\right)\left(2\right)\) ta có bảng sau :
\(m\) | \(10\) | \(9\) | \(8\) | \(7\) | \(6\) |
\(n\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) |
\(a\) | \(60\) | \(54\) | \(48\) | \(42\) | \(36\) |
\(b\) | \(6\) | \(12\) | \(18\) | \(24\) | \(30\) |
Vì 1 trong 2 số chia hết cho 5 → Ta có : a = 60; b = 6
hoặc a = 36 ; b = 30
hiệu 2 số là
1 * 21 = 21
số bé
(2009 - 21) : 2 = 994
số lớn là
2009 - 994 = 1015
a) Tổng 2 số là 2009(số lẻ) nên 2 số đó 1 số là chẵn và một số là lẻ.
Giữa 1 số chẵn và 1 số lẻ có 20 số chẵn thì giữa chúng cũng có 20 số lẻ.
Vậy hiệu của chúng là :
20 + 20 + 1 = 41 ( toán trồng cây)
Số lớn là:
(2009+41):2= 1025 và số bé là: 2009 - 1025 = 984.
Bài 1: Ký hiệu (abcd) là số tự nhiên có 4 chữ số.
(abcd) + (abc) + (ab) + (a) = 1111.a + 111.b + 11.c + d
Vậy 1111.a + 111.b + 11.c + d = 4321
+ Nếu a < 3 => 111.b + 11.c + d > 2098 (vô lý vì b, c, d < 10)
+ Nếu a > 3 => vế trái > 4321
Vậy a = 3 => 111.b + 11.c + d = 988
+ Nếu b < 8 => 11.c + d > 210 (vô lý vì c, d < 10)
+ Nếu b > 8 => vế trái > 988
Vậy b = 8 => 11.c + d = 100
+ Nếu c < 9 => d > 11 (vô lý)
Vậy c = 9; d = 1
=> (abcd) = 3891
n.(n+1) = 2 + 4 + 6 + 8 + ...+ 2500 [ có (2500 - 2) : 2 + 1 = 1250 ( số hạng) ]
n.(n+1) = ( 2 + 2500) x 1250 : 2
n.(n+1) = 2502 x 1250 : 2
n.(n+1) = 1250 x 1251
=> n = 1250
Vậy n = 1250
Gọi số bé là x => số lớn là: 5/3x
Do giữa hai số đó có tất cả 119 số tự nhiên khác => dãy số từ x đến 5/3x gồm 119 + 2 = 201 số hạng
Do đó: (5/3x - x) : 1 + 1 = 201
<=> 2/3x = 200
<=> x = 300
=> số bé là 300 => số lớn là: 300 x 5/3 = 500
Gọi x là số bé => số lớn là 5/3x
Do giữa x và 5/3x có tất cả 119 số tự nhiên khác => dãy số từ x đến 5/3x gồm 119 + 2 = 121 số hạng
=>Do đó: (5/3x - x) : 1 + 1 = 121
<=>2/3x = 120
<=> x = 120 : 2/3 = 180
=> Số bé là 180 => số lớn là: 180 x 5/3 = 300