Cho: x+y+z và x^3+y^3+z^3=1. Tính A= x^2015+y^2015+z^2015
help me!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\left(x+y+z\right)^3=1^3=1\)
Có : \(\left(x+y+z\right)^3-x^3-y^3-z^3=1-1\)
\(\Rightarrow\left[\left(x+y+z\right)-x\right]\left[\left(x+y+z\right)^2+x^2+x\left(x+y+z\right)\right]-\left(y+z\right)\left(y^2+z^2-yz\right)=0\)
\(\Rightarrow\left(y+z\right)\left[x^2+y^2+z^2+2\left(xy+yz+xz\right)+x^2+x^2+xy+yz+xz\right]-\left(y+z\right)\left(y^2+z^2-yz\right)=0\)
\(\Rightarrow\left(y+z\right)\left[x^2+y^2+z^2+2\left(xy+yz+xz\right)+x^2+x^2+xy+yz+xz-y^2-z^2+yz\right]=0\)
\(\Rightarrow\left(y+z\right)\left[3x^2+3xy+3yz+3xz\right]=0\)
\(\Rightarrow3\left(y+z\right)\left(x+z\right)\left(x+y\right)=0\)
\(\Rightarrow\)y+z=0 hoặc x+z=0 hoặc x+y=0
Có : \(A=x^{2015}+y^{2015}+z^{2015}\)
\(=x^{2015}+\left(y+z\right)\left(y^{2014}-y^{2013}z+...+z^{2014}\right)\)
\(=y^{2015}+\left(x+z\right)\left(x^{2014}-x^{2013}z+...+z^{2014}\right)\)
\(=z^{2015}+\left(x+y\right)\left(x^{2014}-x^{2013}y+...+y^{2014}\right)\)
Với \(x+y=0\Rightarrow z=1\Rightarrow A=1+0=1\)
Tương tự với \(y+z=0;z+x=0\)đều có A=1
Vậy ...
Mình nhầm xíu :
Tính giá trị của biểu thức :
P = x2015 + y2015 + z2015
x + y + z = x3 + y3 + z3 = 1
\(\Rightarrow\)( x + y + z )3 = x3 + y3 + z3 = 1
\(\Rightarrow\)( x + y )3 + z3 + 3 ( x + y ) z ( x + y + z ) = x3 + y3 + z3 = 1
\(\Rightarrow\)x3 + y3 + z3 + 3 ( x + y ) ( y + z ) ( x + z ) = x3 + y3 + z3 = 1
\(\Rightarrow\)3 ( x + y ) ( y + z ) ( x + z ) = 0
giả sử x + y = 0 \(\Rightarrow\)z = 1
Ta có : x2015 + y2015 + z2015 = ( x + y ) . A + z2015 = 1