K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2018

Ta có:\(xyzt=\left(1-x\right)\left(1-y\right)\left(1-z\right)\left(1-t\right)\Rightarrow\dfrac{1-x}{x}.\dfrac{1-y}{y}.\dfrac{1-z}{z}\dfrac{1-t}{t}=1\)

Đặt \(\left(\dfrac{1-x}{x},\dfrac{1-y}{y},\dfrac{1-z}{z},\dfrac{1-t}{t}\right)\rightarrow\left(a,b,c,d\right)\) \(\Rightarrow abcd=1\)

Cần chứng minh \(\dfrac{1}{\left(a+1\right)^2}+\dfrac{1}{\left(b+1\right)^2}+\dfrac{1}{\left(c+1\right)^2}+\dfrac{1}{\left(d+1\right)^2}\ge1\)

Bổ đề: \(\dfrac{1}{\left(m+1\right)^2}+\dfrac{1}{\left(n+1\right)^2}\ge\dfrac{1}{mn+1}\) (*)

#cm: Áp dụng BĐT Bunyakovsky:

\(\left(mn+1\right)\left(\dfrac{m}{n}+1\right)\ge\left(m+1\right)^2\Rightarrow\dfrac{1}{\left(m+1\right)^2}\ge\dfrac{\dfrac{n}{m+n}}{mn+1}\)

Tương tự: \(\dfrac{1}{\left(n+1\right)^2}\ge\dfrac{\dfrac{m}{m+n}}{mn+1}\). Cộng theo vế ta có đpcm.

Quay lại bài toán: \(VT\ge\dfrac{1}{ab+1}+\dfrac{1}{cd+1}=\dfrac{1}{\dfrac{1}{cd}+1}+\dfrac{1}{cd+1}=1\)

Vậy ta có đpcm. Dấu =xảy ra khi a=b=c=d=1 hay \(x=y=z=t=\dfrac{1}{2}\)

1 tháng 6 2020

Theo giả thiết cho:  \(xyzt=\left(1-x\right)\left(1-y\right)\left(1-z\right)\left(1-t\right)\)

\(\Rightarrow\frac{1-x}{x}.\frac{1-y}{y}.\frac{1-z}{z}.\frac{1-t}{t}=1\)

Đặt \(\left(\frac{1-x}{x},\frac{1-y}{y},\frac{1-z}{z},\frac{1-t}{t}\right)\rightarrow\left(a,b,c,d\right)\). Lúc đó thì giả thiết được viết lại thành abcd = 1 

Ta có: \(a=\frac{1-x}{x}=\frac{1}{x}-1\Rightarrow x=\frac{1}{a+1}\Rightarrow x^2=\frac{1}{\left(a+1\right)^2}\)

Tương tự, ta có: \(y^2=\frac{1}{\left(b+1\right)^2};z^2=\frac{1}{\left(c+1\right)^2};t^2=\frac{1}{\left(d+1\right)^2}\)và khi đó ta cần chứng minh:\(\frac{1}{\left(a+1\right)^2}+\frac{1}{\left(b+1\right)^2}+\frac{1}{\left(c+1\right)^2}+\frac{1}{\left(d+1\right)^2}\ge1\)

Ta có BĐT phụ sau: \(\frac{1}{\left(p+1\right)^2}+\frac{1}{\left(q+1\right)^2}\ge\frac{1}{pq+1}\)(*)

Thật vậy, theo BĐT Cauchy-Schwarz cho hai dãy số (pq;1) và \(\left(\frac{p}{q};1\right)\), ta có: \(\left(pq+1\right)\left(\frac{p}{q}+1\right)\ge\left(p+1\right)^2\)

\(\Rightarrow\frac{1}{\left(p+1\right)^2}\ge\frac{\frac{q}{p+q}}{pq+1}\)(1)

Tương tự ta có: \(\Rightarrow\frac{1}{\left(q+1\right)^2}\ge\frac{\frac{p}{p+q}}{pq+1}\)(2)

Cộng theo vế của 2 BĐT (1) và (2), ta được:

\(\frac{1}{\left(p+1\right)^2}+\frac{1}{\left(q+1\right)^2}\ge\frac{1}{pq+1}\)(đúng với (*))

Áp dụng vào bài toán, ta được:

\(\frac{1}{\left(a+1\right)^2}+\frac{1}{\left(b+1\right)^2}+\frac{1}{\left(c+1\right)^2}+\frac{1}{\left(d+1\right)^2}\ge\frac{1}{ab+1}+\frac{1}{cd+1}\)

\(=\frac{1}{\frac{1}{cd}+1}+\frac{1}{cd+1}=\frac{cd}{cd+1}+\frac{1}{cd+1}=1\)

Đẳng thức xảy ra khi \(a=b=c=d=1\)hay x = y = z = t =  \(\frac{1}{2}\)

6 tháng 6 2020

22222222222222222222222

26 tháng 7 2019

Ta có:

4 A = ( x + y + z + t ) 2 ( x + y + z ) ( x + y ) x y z t ≥ 4 ( x + y + z ) t ( x + y + z ) ( x + y ) x y z t = 4 ( x + y + z ) 2 ( x + y ) x y z ≥ 4.4 ( x + y ) z ( x + y ) x y z = 16 ( x + y ) 2 x y ≥ 16.4 x y x y ≥ 64 ⇒ A ≥ 16

Đẳng thức xảy ra khi và chỉ khi  x + y + z + t = 2 x + y + z = t x + y = z x = y ⇔ x = y = 1 4 z = 1 2 t = 1

15 tháng 11 2015

\(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\ge\frac{\left(x+y+x\right)^2}{y+z+z+x+x+y}=\frac{x+y+x}{2}=1\)

Dấu ' =' xảy ra khi \(x=y=z=\frac{2}{3}\)

AH
Akai Haruma
Giáo viên
22 tháng 9 2021

Lời giải:

Áp dụng BĐT AM-GM:

$x^3+1=(x+1)(x^2-x+1)\leq \left(\frac{x+1+x^2-x+1}{2}\right)^2=\frac{(x^2+2)^2}{4}$

$\Rightarrow \sqrt{x^3+1}\leq \frac{x^2+2}{2}$

$\Rightarrow \frac{1}{\sqrt{x^3+1}}\geq \frac{2}{x^2+2}$. Tương tự với các phân thức khác và cộng theo vế:

$\sum \frac{1}{\sqrt{x^3+1}}\geq 2\sum \frac{1}{x^2+2}$

Áp dụng BĐT Cauchy-Schwarz:

$\sum \frac{1}{x^2+2}\geq \frac{9}{x^2+y^2+z^2+6}=\frac{9}{12+6}=\frac{1}{2}$

$\Rightarrow \sum \frac{1}{\sqrt{x^3+1}}\geq 2.\frac{1}{2}=1$
Ta có đpcm

Dấu "=" xảy ra khi $x=y=z=2$

2 tháng 4 2018

Áp dụng BĐT Cauchy, ta có:

4A = (x + y + z + t)2(x + y + z)(x + y)/xyzt

>= 4(x + y + z)t(x + y + z)(x + y)/xyzt

>= 4(x + y + z)2(x + y)/xyz >= 4 . 4(x + y)z(x + y)/xyz

>= 16(x + y)2/xy >= 16 . 4xy/xy >= 64

=> A >= 16

23 tháng 1 2018

t lắm tắt luôn nhé có nhiều  câu quá 

áp dụng bdt cô si ta có

a)  \(x+y+z+\frac{1}{xyz}\ge4\sqrt[4]{\frac{1.xyz}{xyz}}=4\)

vậy Min của T là 4 dấu = xảy ra khi x=y=z=1

b)  

áp dụng BDT cosi ta có

\(x+y+Z\ge3\sqrt[3]{xyz}\)

\(\frac{3}{xyz}+3xyz\ge2\sqrt{\frac{3.3xyz}{xyz}}=6\)

+ vế với vế ta được

\(T+3xyz\ge3\sqrt[3]{xyz}+6\)

\(T\ge3\sqrt[3]{xyz}+6-3xyz\)

có  \(xyz\le\frac{\left(x+y+Z\right)^2}{27}\Rightarrow-xyz\ge-\frac{\left(x+y+z\right)^2}{27}\) cùng dấu > thay vào được

\(T\ge3\sqrt[3]{xyz}+6-3\frac{\left(x+y+z\right)^3}{27}\)

Có \(x^2+1\ge2x\)

       \(y^2+1\ge2y\)

      \(z^2+1\ge2z\)  (cosy)

+ vế với vế ta được

\(x^2+y^2+z^2+3\ge2\left(x+y+z\right)\)

\(3\ge\left(x+y+z\right)\Rightarrow-\left(x+y+z\right)\ge-3\) cùng dấu > ta thay được 

\(\Rightarrow T\ge3\sqrt[3]{xyz}+6-3\frac{\left(3\right)^3}{27}\)

\(\Rightarrow T\ge6\) dấu = xảy ra khi x=y=z=1

3) dự đoán của chúa pain x=y=z = \(\frac{1}{\sqrt{3}}\)

thử thay vào

\(\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}+\frac{1}{\frac{1}{\sqrt{3}^3}}\)

số xấu lắm m tự làm đi tương tự câu 1) 2) 

23 tháng 1 2018

1)  dự đoán của chúa Pain x=y=z=1 

áp dụng BDT cô si ta có

\(x+y+z+\frac{1}{xyz}\ge4\sqrt[4]{\frac{xyz}{xyz}}=4.\)

Vậy Min là 4 dấu = xảy ra khi x=y=z=1

2  chia cả tử cả mẫu cho  \(x^2+y^2+z^2=3\) ta được

\(\frac{x}{yz}+\frac{y}{xz}+\frac{z}{xy}=\frac{3}{xyz}\)

thay số ta được

\(\left(x+y+z+\frac{x}{yz}+\frac{z}{xy}+\frac{y}{zx}\right)\)

áp dụng Cô si ta được

\(VT\ge6\sqrt[6]{\frac{x^2y^2z^2}{y^2z^2x^2}}=6\)

vậy Min là 6 dấu = xảy ra khi x=y=z=1

3) TƯỢNG TỰ cậu 2

chia xyz cho 2 vế 

\(x^2+y^2+z^2=1\)

ta được

\(\frac{x}{yz}+\frac{y}{xz}+\frac{z}{xy}=\frac{1}{xyz}\)

thay số

\(\left(x+y+z\right)+\left(\frac{x}{yz}+\frac{y}{xz}+\frac{z}{xy}\right)\)

áp dụng BDT cô si ta được

\(\left(\frac{x}{\frac{1}{\sqrt{3}^2}}+\frac{y}{\frac{1}{\sqrt{3}^2}}+\frac{x}{\frac{1}{\sqrt{3}^2}}\right)+\left(\frac{x}{yz}+\frac{y}{xz}+\frac{z}{xy}\right)\ge....\)

tự làm

14 tháng 1 2021

Ta có x + y + z = 1 nên z = 1 - x - y.

Bất đẳng thức cần chứng minh tương đương:

\(\dfrac{\sqrt{xy+z\left(x+y+z\right)}+\sqrt{2x^2+2y^2}}{1+\sqrt{xy}}\ge1\)

\(\Leftrightarrow\sqrt{\left(z+x\right)\left(z+y\right)}+\sqrt{2x^2+2y^2}\ge1+\sqrt{xy}\).

Áp dụng bất đẳng thức Cauchy - Schwarz:

\(\left(z+x\right)\left(z+y\right)\ge\left(\sqrt{z}.\sqrt{z}+\sqrt{x}.\sqrt{y}\right)^2=\left(z+\sqrt{xy}\right)^2\)

\(\Rightarrow\sqrt{\left(z+x\right)\left(z+y\right)}\ge z+\sqrt{xy}=\sqrt{xy}-x-y+1\); (1)

\(\sqrt{2x^2+2y^2}=\sqrt{\left(1+1\right)\left(x^2+y^2\right)}\ge x+y\). (2)

Cộng vế với vế của (1), (2) ta có đpcm.

 

 

21 tháng 3 2020

ta có \(x+y+z=2019xyz=>2019x^2=\frac{x^2+xy+xz}{yz}\)

\(=>2019x^2+1=\frac{x^2+xy+xz+yz}{yz}=\frac{\left(x+y\right)\left(x+z\right)}{yz}=\left(\frac{x}{y}+1\right)\left(\frac{x}{z}+1\right)\)

\(=>\sqrt{2019x^2+1}=\sqrt{\left(\frac{x}{y}+1\right)\left(\frac{x}{z}+1\right)}\le\frac{1}{2}\left(\frac{x}{y}+\frac{x}{z}+2\right)=1+\frac{x}{2}\left(\frac{1}{y}+\frac{1}{z}\right)\)

(theo BDT cô -si)

\(=>\frac{x^2+1+\sqrt{2019x^2+1}}{x}\le\frac{x^2+1+1+\frac{x}{2}\left(\frac{1}{y}+\frac{1}{z}\right)}{x}=x+\frac{2}{x}+\frac{1}{2}\left(\frac{1}{y}+\frac{1}{z}\right)\)

tương tự \(\frac{y^2+1+\sqrt{2019y^2+1}}{z}\le y+\frac{2}{y}+\frac{1}{2}\left(\frac{1}{z}+\frac{1}{x}\right)\)

\(\frac{z^2+1+\sqrt{2019z^2+1}}{z}\le z+\frac{2}{z}+\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}\right)\)

=>.vt\(\le x+y+z+3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

chứng minh được \(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\)

=>\(3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{3\left(xy+yz+zx\right)}{2019xyz}\le\frac{2019\left(x+y+z\right)^2}{x+y+z}=2019\left(x+y+z\right)\)

=>.vt\(\le2020\left(x+y+z\right)=2020.2019xyz=\)vt

=> dpcm

21 tháng 3 2020

Ta có: \(2019xyz=x+y+z\)

=> \(2019xy=\frac{x}{z}+\frac{y}{z}+1>1\)\(2019yz=\frac{y}{x}+\frac{z}{x}+1>1\)\(2019xz=\frac{x}{y}+\frac{z}{y}+1>1\)

Ta  lại có: \(x+y+z=2019xyz\)

=> \(2019x\left(x+y+z\right)=2019^2x^2yz\)

=> \(2019x^2+1=\left(2019^2x^2yz-2019xy\right)-\left(2019xz-1\right)\)

=> \(2019x^2+1=\left(2019xy-1\right)\left(2019xz-1\right)\le\frac{\left(2019xy+2019xz-2\right)^2}{4}\)

=> \(\sqrt{2019x^2+1}\le\frac{2019xy+2019xz-2}{2}\)

Tương tự : \(\sqrt{2019y^2+1}\le\frac{2019xy+2019yz-2}{2}\)

\(\sqrt{2019z^2+1}\le\frac{2019xz+2019yz-2}{2}\)

=> \(\frac{x^2+1+\sqrt{2019x^2+1}}{x}+\frac{y^2+1+\sqrt{2019y^2+1}}{y}+\frac{z^2+1+\sqrt{2019z^2+1}}{z}\)

\(\le\)\(\frac{x^2+1+\frac{2019xy+2019xz-2}{2}}{x}+\frac{y^2+1+\frac{2019xy+2019yz-2}{2}}{y}+\frac{z^2+1+\frac{2019xz+2019yz-2}{2}}{z}\)

\(=\frac{2x^2+2019xy+2019xz}{2x}+\frac{2y^2+2019xy+2019yz}{2y}+\frac{2z^2+2019xz+2019yz}{2z}\)

\(=x+\frac{2019}{2}y+\frac{2019}{2}z+y+\frac{2019}{2}x+\frac{2019}{2}z+z+\frac{2019}{2}x+\frac{2019}{2}y\)

\(=2020\left(x+y+z\right)=2020.2019xyz\)

Vậy có điều cần cm

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x=y=z\\x+y+z=2019xyz\end{cases}}\Leftrightarrow x=y=z=\frac{1}{\sqrt{673}}\)