K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2020

A B C N M E F

Xét tam giác AEB và tam giác AEC có 

             cạnh AE chung

             AB = AC [ gt ]

            BE = CE [ gt ]

Do đó ; tam giác AEB = tam giác AEC [ c.c.c ]

\(\Rightarrow\)góc BAE = góc CAE \(=\frac{180^0-\widehat{ABC}-\widehat{C}}{2}=\frac{180^0-2\widehat{ABC}}{2}\)[ vì tam giác ABC cân nên góc ABC = góc C ]   [ 1 ]

Xét tam giác NFB và tam giác NFM có

            cạnh NF chung

           NB = NM [ gt ]

            BF = MF [ gt ]

Do đó ; tam giác NFB = tam giác NFM [ c.c.c ]

\(\Rightarrow\)góc BNF = góc MNF= \(\frac{180^0-\widehat{NBM}-\widehat{NMB}}{2}=\frac{180^0-2\widehat{NBM}}{2}\)[vì tam giác NBM cân nên góc NBM = góc NMB] [2]

Ta lại có ; góc ABC = góc NBM [ đối đỉnh ]  [ 3 ]

Từ [ 1 ] , [ 2 ] và [ 3 ] suy ra ;

       góc BAE = góc CAE = góc BNF = góc MBF 

\(\Rightarrow\)góc BAE = góc BNF [ ở vị trí so le trong ]

Vậy AE // NF

Chúc bạn học tốt

10 tháng 7 2020

A B C N M E F 1 2 1 2

VÌ AB=AC 

\(\Rightarrow\Delta ABC\)CÂN TẠI A

\(\Rightarrow\widehat{B}=\widehat{C}\)

XÉT \(\Delta BAE\)\(\Delta CAE\)CÓ 

AB=AC(GT)

\(\widehat{B}=\widehat{C}\left(CMT\right)\)

\(BE=CE\left(GT\right)\)

=>\(\Delta BAE\)=\(\Delta CAE\)(C-G-C)

=> \(\widehat{E_1}=\widehat{E_2}\)

MÀ HAI GÓC NÀY KỀ BÙ

\(\Rightarrow\widehat{E_1}=\widehat{E_2}=\frac{180^o}{2}=90^o\)

\(\Rightarrow\widehat{E_1}=90^o\)

VÌ MN = BN 

=> \(\Delta BMN\)CÂN TẠI N

=>\(\widehat{B}=\widehat{M}\)

XÉT \(\Delta MNF\)\(\Delta BNF\)

MN = BN (GT)

\(\widehat{B}=\widehat{M}\left(CMT\right)\)

\(MF=BF\)(GT)

=>\(\Delta MNF\)=\(\Delta BNF\)(C-G-C)

=>\(\widehat{F_1}=\widehat{F_2}\)

MÀ HAI GÓC NÀY KỀ BÙ

\(\Rightarrow\widehat{F_1}=\widehat{F_2}=\frac{180^o}{2}=90^o\)

\(\Rightarrow\widehat{F_2}=90^o\)

VÌ \(\widehat{F_2}=\widehat{E_1}=90^o\)

HAI GÓC NÀY Ở VỊ TRÍ SO LE TRONG = NHAU

=> NF//AE(ĐPCM)

a: Xét tứ giác AEBC có 

M là trung điểm của AB

M là trung điểm của EC

Do đó: AEBC là hình bình hành

Suy ra: AE=BC

b: Xét tứ giác ABCF có 

N là trung điểm của AC

N là trung điểm của BF

Do đó: ABCF là hình bình hành

Suy ra: AF=BC

mà AE=BC

nên AE=FA

a: Xét tứ giác AEBC có 

M là trung điểm của AB

M là trung điểm của EC

Do đó: AEBC là hình bình hành

Suy ra: AE=BC

b: Xét tứ giác ABCF có 

N là trung điểm của AC

N là trung điểm của BF

Do đó: ABCF là hình bình hành

Suy ra: AF=BC

mà AE=BC

nên AE=FA

6 tháng 1 2022

tham khảo 
 

mik ko thể vẽ hình đc

SORRY

Giải thích các bước giải:

a.*Xét ΔMBN,ΔMAC có:
MA=MB( vì M là trung điểm BA)
ˆNMB=ˆMC (2 góc đối đỉnh)
    MN=MC
⇔ΔMNB=ΔMCA(c.g.c)
⇒ˆMNB=ˆMCA
⇒BN//AC

     Vậy BN//AC
b.Từ câu a ⇒AC=BN
Ta có 
    BN//AC
⇒AC//BE
⇒ˆEAC=ˆAEB
*Xét ΔABE,ΔECA có: 
AE chung
ˆAEB=ˆEAC
    BE=AC
 ⇔ ΔABE=ΔECA(c.g.c)

⇒AB=EC

     Vậy AB=EC
c.Ta có 
       AC//BE
⇒ˆACB=ˆCBE
⇒ˆACF=ˆFBE
*Xét ΔACF và ΔBEF có:
FB=FC( F là trung điểm của BC)
 ˆACF=ˆEBF
    AC=BE
⇔ΔACF=ΔEBF(c.g.c)
⇒ˆAFC=ˆBFE
⇒A,F,E thẳng hàng

         Vậy A;F;E thẳng hàng

6 tháng 1 2022

nếu lỗi vào đây
https://hoidap247.com/cau-hoi/1396184

8 tháng 7 2015

a) Xét tam giác AME và tam giác BMC, có:

            góc AME = góc BMC ( đối đỉnh)

           EM = MC ( giải thiết )

           AM= MB ( M là trung điểm của AB )

\(\Rightarrow\) TAm giác AME = tam giác BMC ( c-g-c)

\(\Rightarrow\)góc AEM = góc BCM ( hai góc tương ứng) 

\(\Rightarrow AE\)//\(BC\) ( đpcm)

 

13 tháng 12 2017

xét tam giác ame và tam giác bmc

me=mc (gt)

góc ema= góc bmc (đối đỉnh)

am=bm( m là trung điểm của ab)

=> tam giác ame= tam giác bmc(c.g.c)

=> góc eam= góc cbm ( 2 cạnh tương ứng)

mà góc eam và góc cbm SLT

=>ae //bc

xét tam giác afn và tam giác cbn

fn=bn (gt)

góc an f= góc bnc (đ đ)

an=cn ( n là trung điểm của ac)

=> tam giác a fn= tam giác cbn (c.g.c)

=> a f=cb (2 cạnh t ung)

mà ae=cb (tam giác ame= tam giác bmc)

=>a f= ae (=cb)

=> a là trung điểm của e f

7 tháng 11 2016

Hình học lớp 7

a,b: Xét tứ giác AECB có

N là trung điểm chung của AC,EB

nên AECB là hình bình hành

=>AE//BC và AE=BC

c: Xét tứ giác AFBC có

M là trung điểm chung của AB và FC

nên AFBC là hình bình hành

=>AF//BC

=>F,A,E thẳng hàng

\(Bài 1. Cho góc xOy, có Ot là tia phân giác. Lấy điểm A trên tia Ox, điểm B trên tia Oy sao cho OA = OB. Vẽ đoạn thẳng AB cắt Ot tại M. Chứng minh a) OAM = OBM; b) AM = BM; OM  AB c) OM là đường trung trực của AB d) Trên tia Ot lấy điểm N . Chứng minh NA = NB Bài 2. Cho ABC vuông tại A, trên tia đối của tia CA lấy điểm K sao cho CK = CA, từ K kẻ KE vuông góc với đường thẳng AC. Chứng mỉnhằng: a) AB //...
Đọc tiếp

\(Bài 1. Cho góc xOy, có Ot là tia phân giác. Lấy điểm A trên tia Ox, điểm B trên tia Oy sao cho OA = OB. Vẽ đoạn thẳng AB cắt Ot tại M. Chứng minh a) OAM = OBM; b) AM = BM; OM  AB c) OM là đường trung trực của AB d) Trên tia Ot lấy điểm N . Chứng minh NA = NB Bài 2. Cho ABC vuông tại A, trên tia đối của tia CA lấy điểm K sao cho CK = CA, từ K kẻ KE vuông góc với đường thẳng AC. Chứng mỉnhằng: a) AB // KE b)  ABC =  KEC ; BC = CE Bài 3. Cho góc nhọn xOy. Trên tia Ox lấy hai điểm A, C. Trên tia Oy lấy hai điểm B,D sao cho OA = OB, AC = BD. a) Chứng minh: AD = BC. b) Gọi E là giao điểm AD và BC. Chứng minh: EAC = EBD c) Chứng minh: OE là phân giác của góc xOy, OE CD Bài 4. Cho ABC coù BÂ=900, gọi M là trung điểm của BC. Trên tia đối của tia AM lấy điểm E sao cho ME = MA. a) Tính  BCE b) Chứng minh BE // AC. Bài 5. Cho ABC, lấy điểm D thuộc cạnh BC ( D không trùng với B,C). Gọi Mlà trung điểm của AD. Trên tia đối của tia MB lấy điểm E sao cho ME= MB, trên tia đối của tia MC lấy điểm F sao cho MF= MC. Chứng minh rằng: a) AME = DMB; AE // BC b) Ba điểm E, A, F thẳng hàng c) BF // CE Bài 6: Cho có  B =  C , kẻ AH  BC, H  BC . Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Chứng minh: a) AB = AC b) ABD = ACE c) ACD = ABE d) AH là tia phân giác của góc DAE e) Kẻ BK  AD, CI  AE. Chứng minh ba đường thẳng AH, BK, CI cùng đi qua một điểm. \)

2
27 tháng 8 2017

Tự mà làm lấy

17 tháng 3 2022

chịu. nhình rối hết cả mắt @-@