Cho hình vuông ABCD. Qua đỉnh A vẽ góc xAy vuông (tại A). Ax cắt AB tại M, cắt CD tại P. Ay cắt CD tại N.
a. CMR: Tam giác MAN vuông cân.
b. Gọi F là đỉnh thứ 4 của hình bình hành MANF. Gọi O là giao điểm của AF và MN. CMR: D, O, B thẳng hàng.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn giải thích giùm mình phần "Góc ANM = góc ACM = 45 độ" được không ạ ?
Có : góc BAM + góc MAD = 90 độ
Lại có : góc MAD + góc DAQ = 90 độ
=> góc BAM = góc DAQ
=> Tam giác ADQ = tam giác ABM ( cgv - gn )
=> AM=AQ => tam giác AMQ cân tại A
Mà tam giác AMQ vuông tại A => tam giác AMQ vuông cân tại A
Tương tự : cm tam giác PAB = tam giác NAD ( cgv - gn )
=> PA = NA => tam giác ANP cân tại A
Mà tam giác ANP vuông tại A nên tam giác ANP vuông cân tại A
Tk mk nha
Xét tam giác CNP vuông tại C có CE là trung tuyến => CE = NP/2
Tương tự : EA = NP/2
=> CE = EA
=> E thuộc trung trực của AC
Tương tự : cm AF = CF = QM/2
=> F thuộc trung trực AC
Mà tứ giác ABCD là hình vuông nên BD chính là trung trực của AC
=> B;D;E;F thẳng hàng
Tk mk nha