tìm cực trị:y=(1-x)^3(3x-8)^2
help me!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Rightarrow\left(x-1\right)^2-\left(2x-3\right)^2=0\\ \Rightarrow\left(x-1-2x+3\right)\left(x-1+2x-3\right)=0\\ \Rightarrow\left(2-x\right)\left(3x-4\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{4}{3}\end{matrix}\right.\)
a)
Ta có : P(y)=0
<=> 3y-6=0
<=> 3y=6
<=> y=2
b>
Ta có:
Nhận xét : Với mọi số thực y ta có : y4= (y2)2;≥ 0 ⇒ y4+ 2 ≥ 2 > 0.
Vậy với mọi số thực y thì Q(y) > 0 nên không có giá trị nào của y để Q(y) = 0 hay đa thức vô nghiệm.
a, Để đa thức P(y) co nghiệm => P(y) = 0
=> 3y+6=0
=> 3y=-6
=>y= -2
Vậy đa thức P(y) co nghiệm bằng - 2
b, Vì y^4 luôn lớn hơn hoặc bằng 0
=> y^4 + 2 luôn lớn hơn hoặc bằng 0
=> y^4 luôn lớn hơn 2
=> Đa thức Q(x) không có nghiệm
a.
\(y'=x^2+2\left(m^2-1\right)x+2m-3\)
\(y''=2x+2\left(m^2-1\right)\)
Hàm đạt cực đại tại \(x=2\) khi: \(\left\{{}\begin{matrix}y'\left(2\right)=0\\y''\left(2\right)< 0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}4+4\left(m^2-1\right)+2m-3=0\\4+2\left(m^2-1\right)< 0\end{matrix}\right.\)
Do \(2m^2+2>0\) ;\(\forall m\) nên ko tồn tại m thỏa mãn yêu cầu đề bài
b.
\(y'=x^2+2mx+3\)
\(y''=2x+2m\)
Hàm đạt cực đại tại \(x=-3\) khi: \(\left\{{}\begin{matrix}9-6m+3=0\\-6+2m< 0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m=2\\m< 3\end{matrix}\right.\)
\(\Rightarrow m=2\)
\(y'=3\left(m-1\right)x^2-6x-\left(m+1\right)\)
Hàm có cực đại và cực tiểu khi và chỉ khi \(y'=0\) có 2 nghiệm pb
\(\Leftrightarrow\left\{{}\begin{matrix}3\left(m-1\right)\ne0\\\Delta'=9+3\left(m-1\right)\left(m+1\right)>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\m^2>-2\left(\text{luôn đúng}\right)\end{matrix}\right.\)
Vậy \(m\ne1\)