K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình của ΔBAC

Suy ra: MN//BC

Xét tứ giác BMNC có MN//BC

nên BMNC là hình thang

21 tháng 10 2021

a, Vì M,N là trung điểm AB,AC nên MN là đtb tg ABC

Do đó MN//BC

b, Vì MN là đtb tg ABC nên \(MN=\dfrac{1}{2}BC=6\left(cm\right)\)

c, Vì MN//BC nên BMNC là hình thang

21 tháng 10 2021

giải chi tiết giúp em đc ko ạ 

 

a: Xét ΔABC có

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình của ΔABC

Suy ra: MN//BC

hay BMNC là hình thang

30 tháng 10 2021

a: Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình của ΔABC

Suy ra: MN//BC

hay BMNC là hình thang

21 tháng 12 2017

a)  \(\Delta ABC\) có  MA = MB;  NA = NC

\(\Rightarrow\)MN là đường trung bình của \(\Delta ABC\)

\(\Rightarrow\)MN // BC

\(\Rightarrow\)Tứ giác BMNC là hình thang

b)  \(\Delta ABC\)có  NA = NC;  QB = QC

\(\Rightarrow\)NQ // AB;   NQ = 1/2 AB

mà   MA = 1/2 AB

\(\Rightarrow\)NQ = MA

Tứ giác AMQN có   NQ // AM;   NQ = AM

\(\Rightarrow\)AMQN là hình bình hành

21 tháng 12 2017

c)  E là điểm đối xứng của H qua M

\(\Rightarrow\)ME = MH

Tứ giác AHBE  có  MA = MB (gt);  ME = MH (gt)

\(\Rightarrow\)AHBE là hình bình hành

mà  \(\widehat{AHB}\)= 900

\(\Rightarrow\)hình bình hành AHBE  là  hình  chữ nhật

8 tháng 11 2021

a, Vì M,N là trung điểm AB,AC nên MN là đtb tg ABC

Do đó MN//BC hay BMNC là hthang

b, Vì N là trung điểm AC và ME(tc đối xứng) nên AECM là hbh

12 tháng 1 2022

a) Xét tam giác ABC có: 

+ M là trung điểm của AB (gt).

+ N là trung điểm của AC (gt).

\(\Rightarrow\) MN là đường trung bình tam giác ABC (Định nghĩa đường trung bình tam giác).

\(\Rightarrow\) MN // BC (Tính chất đường trung bình tam giác).

Xét tứ giác BMNC có: MN // BC (cmt).

\(\Rightarrow\) Tứ giác BMNC là hình thang (dhnb).

b) Xét tứ giác tứ giác AECF có:

+ N là là trung điểm của AC (gt).

+ N là trung điểm của EF (F là điểm đối xứng của E qua N).

\(\Rightarrow\) Tứ giác AECF là hình bình hành (dhnb).

Mà \(\widehat{AEC}=90^o\) \(\left(AE\perp BC\right).\)

\(\Rightarrow\) Tứ giác AECF là hình chữ nhật (dhnb).

c) Xét tam giác AEC có:

+ N là trung điểm AC (gt).

+ ON // EC (MN // BC).

\(\Rightarrow\) O là trung điểm AE (Định lý đường thẳng đi qua trung điểm 1 cạnh và song song với cạnh thứ 2).

Tứ giác AECF là hình chữ nhật (cmt). \(\Rightarrow\) AC = EF (Tính chất hình chữ nhật).

Mà AI = AC (gt).

\(\Rightarrow\) EF = AI.

Xét tam giác AIC có: AI = AC (gt). \(\Rightarrow\) Tam giác AIC cân tại A.

Mà AE là đường cao \(\left(AE\perp BC\right)\).

\(\Rightarrow\) AE là đường trung tuyến (Tính chất các đường trong tam giác).

\(\Rightarrow\) E là trung điểm IC.

Tứ giác AFEC là hình chữ nhật (cmt). \(\Rightarrow\) AF = EC (Tính chất hình chữ nhật).

Mà IE = EC (E là trung điểm IC).

\(\Rightarrow\) AF = IE.

Xét tứ giác AFEI có:

+ AF = IE (cmt).

+ EF = AI (cmt).

\(\Rightarrow\) Tứ giác AFEI là hình bình hành (dhnb).

\(\Rightarrow\) AE và IF cắt nhau tại trung đi mỗi đường (Tính chất hình chữ nhật).

Mà O là trung điểm AE (cmt).

\(\Rightarrow\) O là trung điểm IF.

\(\Rightarrow\) O; I; F thẳng hàng (đpcm).

AH
Akai Haruma
Giáo viên
6 tháng 9 2021

Lời giải:

$M,N$ lần lượt là trung điểm $AB, AC$ nên $MN$ là đường trung bình của tam giác $ABC$ ứng với cạnh $BC$

$\Rightarrow MN\parallel BC$ hay $MN\parallel HP$

$\Rightarrow MNPH$ là hình thang $(*)$

Mặt khác:
Tam giác vuông $ABH$ có $HM$ là đường trung tuyến ứng với cạnh huyền nên $HM=\frac{AB}{2}=MB$ (bổ đề quen thuộc)

$\Rightarrow $MHB$ cân tại $M$

$\Rightarrow \widehat{MHB}=\widehat{MBH}$

Mà $\widehat{MBH}=\widehat{NPC}$ (hai góc đồng vị với $NP\parallel AB$)

$\Rightarrow \widehat{MHB}=\widehat{NPC}$

$\Rightarrow 180^0-\widehat{MHB}=180^0-\widehat{NPC}$

Hay $\widehat{MHP}=\widehat{NPH}(**)$

Từ $(*); (**)\Rightarrow $MNPH$ là hình thang cân (đpcm)

AH
Akai Haruma
Giáo viên
6 tháng 9 2021

Hình vẽ: