Cho số tự nhiên B=2x. 3y. 45(x, y thuộc N*)
Biết B có 65 ước Tìm x,y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 2x+1 là Ư(3x+2)
=>3x+2 chia hết cho 2x+1
<=>2(3x+2) chia hết cho 2x+1
<=>6x+4 chia hết cho 2x+1
<=>3(2x+1)+1 chia hết cho 2x+1
<=>1 chia hết cho 2x+1
=>2x+1 là Ư(1)
=>Ư(1)={-1;1}
Có:
TH1: 2x+1=-1
<=>2x=-2
<=>x=-1(t/m)
TH2: 2x+1=1
<=>2x=0
<=>x=0(t/m)
Vậy x thuộc {-1;0}
b)xy+x+y=2
<=>x(y+1)+y+1=3
<=>(y+1)(x+1)=3
=>y+1 và x+1 thuộc Ư(3)
=>Ư(3)={-1;1;-3;3}
Ta có bảng sau:
x+1 | -1 | 1 | -3 | 3 |
y+1 | -3 | 3 | -1 | 1 |
x | -2 | 0 | -4 | 2 |
y | -4 | 2 | -2 | 0 |
NX | loại | t/m | loại | t/m |
Vậy các cặp số (x;y) thỏa mãn là (0;2) và (2;0)
2/
$n\vdots 65, n\vdots 125$
$\Rightarrow n=BC(65,125)$
$\Rightarrow n\vdots BCNN(65,125)$
$\Rightarrow n\vdots 1625$
$\Rightarrow n=1625k$ với $k$ tự nhiên.
$n=1625k=5^3.13.k$
Nếu $k=1$ thì $n$ có $(3+1)(1+1)=8$ ước (loại)
Nếu $k>1$ thì $n$ có ít nhất $(3+1)(1+1)(1+1)=16$ ước nguyên tố.
$n$ có đúng 16 ước nguyên tố khi mà $k$ là 1 số nguyên tố.
Vậy $n=1625p$ với $p$ là số nguyên tố.
\(a,12⋮x-1\)
\(x-1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm12\right\}\)
Ta lập bảng xét giá trị
x - 1 1 -1 2 -2 3 -3 4 -4 12 -12
x 2 0 3 -1 4 -2 5 -3 13 -11
\(c,x+15⋮x+3\)
\(x+3+12⋮x+3\)
\(12⋮x+3\)
Tự lập bảng , lười ~~~
\(d,\left(x+1\right)\left(y-1\right)=3\)
Ta lập bảng
x+1 | 1 | -1 | 3 | -3 |
y-1 | 3 | -3 | 1 | -1 |
x | 2 | 0 | 2 | -4 |
y | 4 | -2 | 2 | 0 |
i, Theo bài ra ta có : ( olm thiếu dấu và == nên trình bày kiủ nài )
\(x⋮10,x⋮12,x⋮15\)và \(100< x< 150\)
Gợi ý : Phân tích thừa số nguyên tố r xét ''BC'' ( chắc là BC )
:>> Hc tốt
Câu 1:
Ta có: 10^n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9)
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1).
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1).
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10^n + 18n - 1 chia hết cho 27 (đpcm)
Tick nha !!!