K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2018

tích cho mk với mk bị trừ 20 điểm rồi

22 tháng 11 2018

cảm ơn nha

9 tháng 5 2020

câu 1: 11

câu 2 : a/ 1               b/4                                 c/ -2

câu 3: a/ 4655482                                                      b/ 790

18 tháng 12 2016

\(225-15^2=0\) nên nguyên phần số mũ là \(0\)

Tới đây bạn tự biết kết quả là \(1\)

10 tháng 9 2017

\(2017\cdot \left(225-1^2\right)\left(225-2^2\right)....\left(225-15^2\right).....\left(225-56^2\right)\)

\(=2017\cdot224\cdot221\cdot\cdot\cdot\cdot\cdot0\cdot\cdot\cdot\left(-2911\right)\)

\(=0\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

\(\begin{array}{l}\cos \left( {{{225}^ \circ }} \right) = \cos \left( {{{180}^ \circ } + {{45}^ \circ }} \right) =  - \cos \left( {{{45}^ \circ }} \right) =  - \frac{{\sqrt 2 }}{2}\\\sin \left( {{{225}^ \circ }} \right) = \sin \left( {{{180}^ \circ } + {{45}^ \circ }} \right) =  - \sin \left( {{{45}^ \circ }} \right) =  - \frac{{\sqrt 2 }}{2}\\\tan \left( {225^\circ } \right) = \frac{{\sin \left( {{{225}^ \circ }} \right)}}{{\cos \left( {{{225}^ \circ }} \right)}} = 1\\\cot \left( {225^\circ } \right) = \frac{1}{{\tan \left( {225^\circ } \right)}} = 1\end{array}\)

\(\begin{array}{l}\cos \left( { - {{225}^ \circ }} \right) = \cos \left( {{{225}^ \circ }} \right) = \cos \left( {{{180}^ \circ } + {{45}^ \circ }} \right) =  - \cos \left( {{{45}^ \circ }} \right) =  - \frac{{\sqrt 2 }}{2}\\\sin \left( { - {{225}^ \circ }} \right) =  - \sin \left( {{{225}^ \circ }} \right) =  - \sin \left( {{{180}^ \circ } + {{45}^ \circ }} \right) = \sin \left( {{{45}^ \circ }} \right) = \frac{{\sqrt 2 }}{2}\\\tan \left( { - 225^\circ } \right) = \frac{{\sin \left( {{{225}^ \circ }} \right)}}{{\cos \left( {{{225}^ \circ }} \right)}} =  - 1\\\cot \left( { - 225^\circ } \right) = \frac{1}{{\tan \left( {225^\circ } \right)}} =  - 1\end{array}\)

\(\begin{array}{l}\cos \left( { - {{1035}^ \circ }} \right) = \cos \left( {{{1035}^ \circ }} \right) = \cos \left( {{{6.360}^ \circ } - {{45}^ \circ }} \right) = \cos \left( { - {{45}^ \circ }} \right) = \cos \left( {{{45}^ \circ }} \right) = \frac{{\sqrt 2 }}{2}\\\sin \left( { - {{1035}^ \circ }} \right) =  - \sin \left( {{{1035}^ \circ }} \right) =  - \sin \left( {{{6.360}^ \circ } - {{45}^ \circ }} \right) =  - \sin \left( { - {{45}^ \circ }} \right) = \sin \left( {{{45}^ \circ }} \right) = \frac{{\sqrt 2 }}{2}\\\tan \left( { - 1035^\circ } \right) = \frac{{\sin \left( { - {{1035}^ \circ }} \right)}}{{\cos \left( { - {{1035}^ \circ }} \right)}} = 1\\\cot \left( { - 1035^\circ } \right) = \frac{1}{{\tan \left( { - 1035^\circ } \right)}} =  - 1\end{array}\)

\(\begin{array}{l}\cos \left( {\frac{{5\pi }}{3}} \right) = \cos \left( {\pi  + \frac{{2\pi }}{3}} \right) =  - \cos \left( {\frac{{2\pi }}{3}} \right) = \frac{1}{2}\\\sin \left( {\frac{{5\pi }}{3}} \right) = \sin \left( {\pi  + \frac{{2\pi }}{3}} \right) =  - \sin \left( {\frac{{2\pi }}{3}} \right) =  - \frac{{\sqrt 3 }}{2}\\\tan \left( {\frac{{5\pi }}{3}} \right) = \frac{{\sin \left( {\frac{{5\pi }}{3}} \right)}}{{\cos \left( {\frac{{5\pi }}{3}} \right)}} =  - \sqrt 3 \\\cot \left( {\frac{{5\pi }}{3}} \right) = \frac{1}{{\tan \left( {\frac{{5\pi }}{3}} \right)}} =  - \frac{{\sqrt 3 }}{3}\end{array}\)

\(\begin{array}{l}\cos \left( {\frac{{19\pi }}{2}} \right) = \cos \left( {8\pi  + \frac{{3\pi }}{2}} \right) = \cos \left( {\frac{{3\pi }}{2}} \right) = \cos \left( {\pi  + \frac{\pi }{2}} \right) =  - \cos \left( {\frac{\pi }{2}} \right) = 0\\\sin \left( {\frac{{19\pi }}{2}} \right) = \sin \left( {8\pi  + \frac{{3\pi }}{2}} \right) = \sin \left( {\frac{{3\pi }}{2}} \right) = \sin \left( {\pi  + \frac{\pi }{2}} \right) =  - \sin \left( {\frac{\pi }{2}} \right) =  - 1\\\tan \left( {\frac{{19\pi }}{2}} \right)\\\cot \left( {\frac{{19\pi }}{2}} \right) = \frac{{\cos \left( {\frac{{19\pi }}{2}} \right)}}{{\sin \left( {\frac{{19\pi }}{2}} \right)}} = 0\end{array}\)

\(\begin{array}{l}\cos \left( { - \frac{{159\pi }}{4}} \right) = \cos \left( {\frac{{159\pi }}{4}} \right) = \cos \left( {40.\pi  - \frac{\pi }{4}} \right) = \cos \left( { - \frac{\pi }{4}} \right) = \cos \left( {\frac{\pi }{4}} \right) = \frac{{\sqrt 2 }}{2}\\\sin \left( { - \frac{{159\pi }}{4}} \right) =  - \sin \left( {\frac{{159\pi }}{4}} \right) =  - \sin \left( {40.\pi  - \frac{\pi }{4}} \right) =  - \sin \left( { - \frac{\pi }{4}} \right) = \sin \left( {\frac{\pi }{4}} \right) = \frac{{\sqrt 2 }}{2}\\\tan \left( { - \frac{{159\pi }}{4}} \right) = \frac{{\cos \left( { - \frac{{159\pi }}{4}} \right)}}{{\sin \left( { - \frac{{159\pi }}{4}} \right)}} = 1\\\cot \left( { - \frac{{159\pi }}{4}} \right) = \frac{1}{{\tan \left( { - \frac{{159\pi }}{4}} \right)}} = 1\end{array}\)

24 tháng 5 2019

b, B=202-192+182-172+...+22-12

=(202-192)+(182-172)+...+(22-12)

= (20-19)(20+19)+(18-17)(18+17)+..+(2-1)(2+1)

=39+35+...+3

=\(\xrightarrow[10sốhạng]{3+..+35+39}\)

=\(\frac{\left(39+3\right).10}{2}=210\)

Vậy B =210