K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2018

Ta có: \(3x^3+ax+b=\left(x+1\right)Q\left(x\right)+6\) (1)

\(3x^3+ax+b=\left(x-3\right)P\left(x\right)+70\)(2)

Thay \(x=-1\) vào (1) và x = 3 vào (2), ta có: 

\(\hept{\begin{cases}3.\left(-1\right)^3+a.\left(-1\right)+b=6\\3.3^3+3a+b=70\end{cases}\Rightarrow\hept{\begin{cases}-a+b=9\\3a+b=-11\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}3a+b-\left(-a+b\right)=-11-9\\3a+b=-11\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}4a=-20\\3a+b=-11\end{cases}\Rightarrow\hept{\begin{cases}a=-5\\b=4\end{cases}}}\)

AH
Akai Haruma
Giáo viên
13 tháng 5 2023

Theo đề thì bạn chỉ tính được tổng $a+b$ thôi chứ sẽ không tính được cụ thể giá trị $a,b$.

20 tháng 3 2017

a) 2x-3=0 <=> x=\(\dfrac{3}{2}\) để \(\left(2x^2-ax+5\right):\left(2x-3\right)\) thì \(2x^2-ax+5=2\)

Thay x= \(\dfrac{3}{2}\) vào \(2x^2-ax+5\), ta được:

\(\dfrac{9}{2}-\dfrac{3}{2}a+5=2\)

<=> \(-\dfrac{3}{2}a=2-5-\dfrac{9}{2}\) <=>a=5

20 tháng 3 2017

lười quá ~~

bài 1

vì đa thức bị chia bậc 2, đa thức chia bậc nhất

=> đa thức thương sẽ có dạng bx+c

theo đề ta có

\(2x^2-ax+5=\left(bx+c\right)\left(2x-3\right)+2\\ < =>2x^2-ax+5=2bx^2-3bx+2cx-3c+2\\ < =>2x^2-ax+5=2bx^2-x\left(2c-3b\right)-3c+2\\ < =>\left\{{}\begin{matrix}2x^2=2bx^2\\ax=x\left(2c-3b\right)\\5=2-3c\end{matrix}\right.\\ < =>\left\{{}\begin{matrix}b=1\\c=-1\\a=2c-3b\end{matrix}\right.\\ =>a=2\left(-1\right)-3.1\\ =>a=-5\)

vậy a = -5

bài 2 ko hiểu sao mình ko làm được, chắc sai ở đâu đợi mình làm lại nhé

31 tháng 1 2021

undefined

31 tháng 1 2021

thank bạnyeu

27 tháng 10 2021

p(x)=\(x^3+ã^2+bx+c\)

với x=1 thì p(1)=0 hay

\(1+a+b+c=0\)

p(x) \(chia\)p(x-2) dư 6

với x=2 =>\(4a+2b+c+8=6< =>4a+2b+c=-2\)

tương tự với cái còn lại

xong bạn giải hệ phương trình bậc nhất ba ẩn là xong

5 tháng 5 2023

\(a,A\left(x\right)=-3x^3+2x^2-6+5x+4x^3-2x^2-4-4x\\ =\left(-3x^3+4x^3\right)+\left(2x^2-2x^2\right)+\left(5x-4x\right)+\left(-6-4\right)\\ =x^3+0+x-10\\ =x^3+x-10\)

Bậc của đa thức : \(3\)

Hệ số cao nhất ứng với hệ số của số mũ cao nhất : \(1\)

b, \(B\left(x\right)=A\left(x\right).\left(x-1\right)\\ =\left(x^3+x-10\right)\left(x-1\right)\\ =x^3.x+x.x-10x-x^3-x+10\\ =x^4+x^2-x^3-10x-x+10\\ =x^4-x^3+x^2-11x+10\)

\(B\left(2\right)=2^4-2^3+2^2-11.2+10=0\)

7 tháng 11 2020

gọi thưong trong phép chia trên là Q(x)

theo bài ra ta có

5x^3+2x^2+ax+b=(x^2+5).Q(x)+1 với mọi x (*)

thay x^2+5=0 vào (*) ta có

5x^3+2x^2+ax+b=1    (1)

mặt khác vì x^2+5=0 

<=>5x(x^2+5)+2(x^2+5)=5x^3+2x^2+25x+10=0     

<=>5x^3+2x^2+25x+11=1    (2) 

từ (1) và (2) 

<=>ax+b=25x+11

<=>a=25

      b=11

vậy a=25 b=11 thì 5x^3+2x^2+ax+b chia cho x^2+5 dư 1