Chứng minh 98<\(\dfrac{3}{4}+\dfrac{8}{9}+\dfrac{15}{16}+...+\dfrac{9999}{10000}< 99\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=3^{100}-2^{100}+3^{98}-2^{98}\)
\(B=\left(3^{100}+3^{98}\right)-\left(2^{100}+2^{98}\right)\)
\(B=3^{98}\left(3^2+1\right)-2^{98}\left(2^2+1\right)\)
\(B=3^{98}.10-2^{98}.5\)
\(B=3^{98}.10-2^{97}.10\)
\(B=10\left(3^{98}-2^{97}\right)\)
Vì \(10\left(3^{98}-2^{97}\right)⋮10\)
\(\Rightarrow B⋮10\)
Ta có :
\(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{98}=\frac{2.3...98+3.4...98+2.4...98+....+2.3....97}{2.3.4.....98}\)
\(\Rightarrow A=\frac{2.3...98+3.4...98+2.4...98+....+2.3..98}{2.3.4....98}.2.3.4...98\)
\(=2.3...98+3.4....98+2.4....98+.....+2.3...98\) là một số nguyên
Vậy A là một số nguyên
Ta có:A=1.2.3...98+\(\frac{1.2.3...98}{2}\)+\(\frac{1.2.3...98}{3}\)+...+\(\frac{1.2.3...98}{98}\)
=1.2.3...98+1.3.4.5...98+....+1.2.3...97
Vì 1.2.3...98 có kết quả là số nguyên,....,1.2.3...97 có kết quả là số nguyên
=>A là số nguyên
\(5^{100}+5^{98}=5^{98}\left(5^2+1\right)=5^{98}.26=5^{28}.13.2\)
Vậy....
5100 + 598 = 598(52 + 1)
= 598 . 26
= 598.2.13 chia hết cho 13 ( vì 598.2 \(\in\) Z
Tính biểu thức 1/1+1/2+1/3+...+1/98 bằng cách ghép thành từng cặp các phân số cách đều 2 phân số đầu và cuối
ta được :
( 1/1+1/98)+( 1/2+1/97 ) + ...+ ( 1/49+1/50 )
= 99/1.98+99/2.97+...+99/49.50
gọi các thừa số phụ là k1, k2, k3, ..., k49 thì
A = 99.(k1+k2+k3+...+k49)/99.(k1+k2+...+k49) x 2.3.4....97.98
= 99.(k1+k2+...+k49)
=> A chia hết cho 49 (1)
b)
Cộng 96 p/s theo từng cặp :
a/b = ( 1/1+1/96)+(1/2+1/95)+(1/3+1/94)+...+(1/48+1/49)
.................................................. ( làm tiếp nhé )
mỏi woa
Đặt \(A=\dfrac{3}{4}+\dfrac{8}{9}+...+\dfrac{9999}{10000}=1-\dfrac{1}{4}+1-\dfrac{1}{9}+...+1-\dfrac{1}{10000}\)
\(=99-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}\right)=99-B\)
Do \(B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}>0\Rightarrow99-B< 99\Rightarrow A< 99\)
Do \(B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\)
\(\Rightarrow B< \dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}=1-\dfrac{1}{100}\)
\(\Rightarrow A=99-B>99-\left(1-\dfrac{1}{100}\right)=98+\dfrac{1}{100}>98\)
Vậy \(98< \dfrac{3}{4}+\dfrac{8}{9}+...+\dfrac{9999}{10000}< 99\)
thanks