K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2018

bài này mà lớp 9 á

21 tháng 2 2020

dùng denta là xong ngay ấy bạn

21 tháng 2 2020

(Đưa về phương trình bậc 2 ẩn yy, tham số xx)

Pt ⇔2y2+(3x−1)y+x2−2x−6=0⇔2y2+(3x−1)y+x2−2x−6=0

Δ=(3x−1)2−4.2(x2−2x−6)=x2+10x+49=(x+5)2+24>0∀xΔ=(3x−1)2−4.2(x2−2x−6)=x2+10x+49=(x+5)2+24>0∀x

Để phương trình đã cho có nghiệm nguyên thì Δ=(x+5)2+24Δ=(x+5)2+24 phải là một số chính phương.

Đặt (x+5)2+24=k2(k∈N∗)⇔(x+5)2−k2=−24⇔(x+5−k)(x+5+k)=−24=−12.2=−6.4=−4.6=−2.12(x+5)2+24=k2(k∈N∗)⇔(x+5)2−k2=−24⇔(x+5−k)(x+5+k)=−24=−12.2=−6.4=−4.6=−2.12(tích của 2 số nguyên có tổng chẵn, (số bé .số lớn)

Lập bảng xét giá trị ta được các giá trị của xx và yy:

x=−10→y=6tm;x=−10→y=6tm;

x=−6→y=6tm;x=−6→y=6tm;

x=−4→y=4,5ktm;x=−4→y=4,5ktm;

x=0→y=2tmx=0→y=2tm

Vậy...

NV
14 tháng 10 2019

a/ \(\Leftrightarrow2x^2-\left(3y-6\right)x-2y^2-2y-1=0\) (1)

\(\Delta=\left(3y-6\right)^2+8\left(2y^2+2y+1\right)=\left(5y-2\right)^2+40\)

Để (1) có nghiệm nguyên thì \(\Delta\) là số chính phương

\(\Rightarrow\left(5y-2\right)^2+40=k^2\) với \(k\in Z\)

\(\Rightarrow k^2-\left(5y-2\right)^2=40\)

\(\Rightarrow\left(k+5y-2\right)\left(k-5y+2\right)=40\)

Do \(\left(k+5y-2\right)+\left(k-5y+2\right)=2k\) chẵn nên chúng cùng tính chẵn lẻ

Vậy ta chỉ cần xét các cặp ước cùng tính chẵn lẻ của 40 là (dài quá, bạn tự xét)

NV
14 tháng 10 2019

b/ \(\Leftrightarrow2x^2+4x+2=21-3y^2\)

\(\Leftrightarrow2\left(x+1\right)^2=3\left(7-y^2\right)\)

Do vế trái chẵn và không âm \(\Rightarrow\) vế phải chẵn và không âm

\(\Rightarrow y^2\) lẻ và \(y^2\le7\Rightarrow y^2=\left\{0;1;4\right\}\)

\(\Rightarrow y^2=1\Rightarrow\left[{}\begin{matrix}y=1\\y=-1\end{matrix}\right.\)

\(\Rightarrow2\left(x+1\right)^2=18\)

\(\Rightarrow\left(x+1\right)^2=9\Rightarrow\left[{}\begin{matrix}x+1=3\\x+1=-3\end{matrix}\right.\)

31 tháng 10 2018

a) \(2x+13y=156\) (1)

.Ta thấy 156 và 2y đều chia hết cho 2 nên \(13y\) chia hết cho 2,do đó y chia hết cho 2 (do 13 và 2 nguyên tố cùng nhau)

Đặt \(y=2t\left(t\in Z\right)\).Thay vào phương trình (1),ta được:\(2x+13.2t=156\Leftrightarrow x+13t=78\)

Do đó \(\hept{\begin{cases}x=78-13t\\y=2t\end{cases}}\) (t là số nguyên tùy ý)

b)Biến đổi phương trình thành: \(2xy-4x=7-y\)

\(=2x\left(y-2\right)=7-y\).Ta thấy \(y\ne2\)(vì nếu y = 2 thì ta có 0.2x = 5 , vô ngiệm )

Do đó \(x=\frac{7-y}{y-2}=\frac{7+2-y-2}{y-2}=\frac{9}{y-2}-1\) .Do vậy để x nguyên thì \(\frac{9}{y-2}\) nguyên

hay \(y-2\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\).Đến đây lập bảng tìm y là xong!

31 tháng 10 2018

c) \(3xy+x-y=1\)

\(\Leftrightarrow9xy+3x-3y=3\)

\(\Leftrightarrow9xy+3x-3y-1=2\)

\(\Leftrightarrow3x\left(3y+1\right)-1\left(3y+1\right)=2\)

\(\Leftrightarrow\left(3x-1\right)\left(3y+1\right)=2\).Đến đây phương trình đã được đưa về phương trình ước số,bạn tự giải (mình lười quá man!)

8 tháng 4 2017

\(\Leftrightarrow2x^2-xy+4xy-2y^2=7\)

\(\Leftrightarrow\left(x+2y\right)\left(2x-y\right)=7\)

\(\Leftrightarrow\orbr{\begin{cases}x+2y=1\\2x-y=7\end{cases}}\)hoặc \(\orbr{\begin{cases}x+2y=-1\\2x-y=-7\end{cases}}\)hoặc \(\orbr{\begin{cases}x+2y=7\\2x-y=1\end{cases}}\)hoặc \(\orbr{\begin{cases}x+2y=-7\\2x-y=-1\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=3\\y=-1\end{cases}}\)   hoặc \(\orbr{\begin{cases}x=-3\\y=1\end{cases}}\) hoặc\(\orbr{\begin{cases}x=\frac{9}{5}\\y=\frac{13}{5}\end{cases}}\)hoặc (loại)  \(\orbr{\begin{cases}x=\frac{-9}{5}\\y=\frac{-13}{5}\end{cases}}\)(loại)

vậy, phương trình có nghiệm nguyên (x;y)=(3;-1);(-3;1)

17 tháng 3 2018

  2x^2 + y^2 + 3xy + 3x + 2y + 2 = 0 

<=> 16x^2 + 8y^2 + 24xy + 24x + 16y + 16 = 0 

<=> (4x)^2 + 24x(y+1) + 8y^2 + 16y + 16 = 0 

<=> (4x)^2 + 24x(y+1) + [3(y + 1)]^2 - [3(y + 1)]^2 + 8y^2 + 16y + 16 = 0 

<=> (4x + 3y + 3)^2 - 9y^2 - 18y - 9 + 8y^2 + 16y + 16 = 0 

<=> (4x + 3y + 3)^2 - y^2 - 2y - 1 + 8 = 0 

<=> (4x + 3y + 3)^2 - (y + 1)^2 = - 8 

<=> (y + 1)^2 - (4x + 3y + 3)^2 = 8 

<=> (y + 1 +4x + 3y + 3)(y + 1 - 4x - 3y - 3) = 8 

<=> 4(x + y + 4)( - 4x - 2y - 2) = 8 

<=> (x + y + 4)( 2x + y + 1) = -1 

=> 
{x + y + 4 = -1 
{2x + y + 1 = 1 
=> x = 2 và y = - 4 

{x + y + 4 = 1 
{2x + y + 1 = - 1 
=> x = - 2 và y = 2 

vậy nghiệm (x;y) = (2 ; - 4) (-2; 2)