K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2022

PTHĐGD là:

(2m-2)x+1-2m=1/2(1-m)x+3/2(1-m)

=>\(\Leftrightarrow x\left(2m-2-\dfrac{1}{2\left(1-m\right)}\right)=\dfrac{3}{2\left(1-m\right)}-1+2m\)

\(\Leftrightarrow x\cdot\left(\dfrac{4\left(m-1\right)\left(m-1\right)+1}{2\left(m-1\right)}\right)=\dfrac{3+2\left(1-m\right)\left(-1+2m\right)}{2\left(1-m\right)}\)

\(\Leftrightarrow x\cdot\dfrac{4m^2-8m+4+1}{2\left(m-1\right)}=\dfrac{3+\left(2-2m\right)\left(2m-1\right)}{2\left(1-m\right)}\)

\(\Leftrightarrow x=\dfrac{3-4m-2-4m^2+2m}{4m^2-8m+4}=\dfrac{-4m^2-2m+1}{4m^2-8m+4}\)

=>\(y=\left(2m-2\right)\cdot\dfrac{-4m^2-2m+1}{4\left(m-1\right)^2}+1-2m\)

\(=\dfrac{2\left(m-1\right)\left(-4m^2-2m+1\right)}{4\left(m-1\right)^2}+1-2m\)

\(=\dfrac{-4m^2-2m+1}{2\left(m-1\right)}+\left(-2m+1\right)\)

\(=\dfrac{-4m^2-2m+1+\left(-2m+1\right)\cdot\left(2m-2\right)}{2\left(m-1\right)}\)

\(=\dfrac{-4m^2-2m+1-4m^2+4m-2m+2}{2\left(m-1\right)}\)

\(=\dfrac{-8m^2+3}{2\left(m-1\right)}\)

30 tháng 5 2017

Phương trình hoành độ giao điểm của (P) và (d) là:

        x2 = (2m - 1)x - (2m - 2)    (*)

<=>  x2 - (2m - 1)x + 2m + 2 = 0

     \(\Delta\)= b2 - 4ac = (1 - 2m)2 - 4.(2m + 2) = 4m2 - 4m + 1 - 8m - 8

                                                              = 4m2 - 12m - 7

     \(\Delta\)= b2 - 4ac = (-12)2 - 4.4.(-7) = 144 + 112 = 226 > 0

=> phương trình (*) luôn có nghiệm => (d) và (P) cắt nhau với mọi m.

30 tháng 5 2017
đã trả lời ở lần đăng câu hỏi tr rồi nhé
30 tháng 5 2017

lần đăng câu hỏi trước khác

30 tháng 5 2017

Xét phương trình hoành độ giao điểm của (P) và (d) có :

x2= (2m-1)-(2m-2)  <=> x2 = 2m-1-21+2  <=> x2 = 1\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)

phương trình luôn có nghiêm với mọi giá trị của m,vậy P luôn cắt d Tại 2 điểm phân biệt với mọi m

30 tháng 5 2017

Xét phương trình hoành độ giao điểm :

\(^{x^2=\left(2m+1\right)x-\left(2m-2\right)\Leftrightarrow x^2-x\left(2m-1\right)-2m+2=0\left(1\right)}\)

Phương trình (1) có : \(\Delta=\left(2m-1\right)^2-4\left(2m-2\right)=4m^2-12m+9=\left(2m-3\right)^2\ge0\)

nên phương trình luôn có nghiệm với mọi m, nên 2 dồ thị luôn có giao điểm

30 tháng 5 2017

sai rồi phương trình cắt nhau khi \(\Delta\)>0

Tọa độ giao điểm là:

4x-y=-7 và 2x-y=9

=>x=-8 và y=-25

Thay x=-8 và y=-25 vào (d), ta được:

-8(m+2)-2m-1=-25

=>-8m-16-2m-1=-25

=>-10m-17=-25

=>-10m=-8

=>m=4/5

2 tháng 12 2023

Cho đường thẳng (d): (y=(2m+1)x-2) với m là tham số và (m\ne-\frac{1}{2}.) Khoảng cách từ (A(-2;1)) đến đường thẳng d được tính theo công thức:

[\sqrt{(-2-(2m+1)(-2))^2+(1-(2m+1)(-2))^2}]

[\sqrt{(16m^2+20m+4)^2+(24m+4)^2}]

[\sqrt{256m^4+640m^3+320m^2+576m^2+960m+16}]

[\sqrt{256m^4+1216m^3+1536m^2+960m+16}]

[\sqrt{16m^2(16m^2+79m+96)+4(16m^2+79m+96)}]

[\sqrt{(4m+7)^2(4m+16)}]

Theo đề bài, khoảng cách này bằng (\frac{1}{\sqrt{2}}.) Do đó, ta có phương trình:

[\sqrt{(4m+7)^2(4m+16)}=\frac{1}{\sqrt{2}}]

Từ đây, ta được phương trình bậc hai:

[(4m+7)^2(4m+16)=1 ]

Giải phương trình này, ta được hai nghiệm:

[m=-\frac{3}{2}\pm\frac{\sqrt{3}}{2} ]

Do (m\ne-\frac{1}{2},) ta có nghiệm duy nhất là:

[m=-\frac{3}{2}+\frac{\sqrt{3}}{2}=\frac{5}{7} ]

Vậy, tổng các giá trị của m thỏa mãn bài toán là [\frac{5}{7}.]

PTHĐGĐ là:

x^2-(2m+5)x+2m+1=0

Δ=(2m+5)^2-4(2m+1)

=4m^2+20m+25-8m-4

=4m^2+12m+21=(2m+3)^2+12>=12>0 với mọi m

=>(d) luôn cắt (P) tại hai điểm phân biệt

23 tháng 12 2023

a: Thay x=2 và y=-3 vào (d), ta được:

\(2\left(2m-1\right)-2m+5=-3\)

=>\(4m-2-2m+5=-3\)

=>2m+3=-3

=>2m=-6

=>\(m=-\dfrac{6}{2}=-3\)

b: Để (d)//(d') thì \(\left\{{}\begin{matrix}2m-1=2\\-2m+5\ne1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2m=3\\-2m\ne-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{3}{2}\\m\ne2\end{matrix}\right.\)

=>m=3/2

Thay m=3/2 vào (d), ta được:

\(y=\left(2\cdot\dfrac{3}{2}-1\right)x-2\cdot\dfrac{3}{2}+5=2x+2\)

loading...

y=2x+2 nên a=2

Gọi \(\alpha\) là góc tạo bởi (d) với trục Ox

\(tan\alpha=2\)

=>\(\alpha\simeq63^026'\)