Qui đồng mẫu thức các phân thức:
\(\dfrac{x}{x^2+2x-15};\dfrac{1}{x^2+5x-6}\) và \(\dfrac{1}{-x^2+4x-3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\frac{2}{x^3-y^3}=\frac{2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(\frac{2x-1}{x^2-y^2}=\frac{2x+1}{\left(x+y\right)\left(x-y\right)}\)
\(\frac{1}{x+y}\) giữ nguyên
MTC: \(\left(x+y\right)\left(x-y\right)\left(x^2+xy+y^2\right)\)
Các nhân tử phụ tương ứng là : \(\left(x+y\right);\left(x-y\right)\left(x^2+xy+y^2\right);\left(x^2+xy+y^2\right)\)
Ta có:
\(\frac{2}{\left(x-y\right)\left(x^2+xy+y^2\right)}=\frac{2.\left(x+y\right)}{\left(x-y\right)\left(x+y\right)\left(x^2+xy+y^2\right)}\)
\(\frac{1}{x+y}=\frac{1.\left(x-y\right)\left(x^2+xy+y^2\right)}{\left(x+y\right)\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(\frac{2x+1}{\left(x+y\right)\left(x-y\right)}=\frac{\left(2x+1\right)\left(x^2+xy+y^2\right)}{\left(x+y\right)\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(\frac{-3}{x^2+6x+8}=\frac{-3}{x\left(x+2\right)+4\left(x+2\right)}=\frac{-3}{\left(x+2\right)\left(x+4\right)}=\frac{-3x+12}{\left(x+2\right)\left(x+4\right)\left(x-4\right)}\)
\(\frac{5}{x^2-16}=\frac{5}{\left(x-4\right)\left(x+4\right)}=\frac{5x+10}{\left(x+2\right)\left(x-4\right)\left(x+4\right)}\)
\(\frac{1}{x^2-2x-8}=\frac{1}{x\left(x-4\right)+2\left(x-4\right)}=\frac{1}{\left(x-4\right)\left(x+2\right)}=\frac{x+4}{\left(x+2\right)\left(x+4\right)\left(x-4\right)}\)
\(\frac{x+2}{4x-x^2-3}=\frac{-\left(x+2\right)}{x^2-4x+3}=\frac{\left(-x-2\right)\left(2x+5\right)}{\left(x-1\right)\left(x-3\right)\left(2x+5\right)}=\frac{-2x^2-9x-10}{\left(x-1\right)\left(x-3\right)\left(2x+5\right)}\)
\(\frac{1}{2x^2+3x-5}=\frac{1}{\left(x-1\right)\left(2x+5\right)}=\frac{x-3}{\left(x-1\right)\left(x-3\right)\left(2x+5\right)}\)
\(\frac{4}{x^2-9}=\frac{4}{\left(x-3\right)\left(x+3\right)}=\frac{4x}{x\left(x-3\right)\left(x+3\right)}\)
\(\frac{1-x}{3x-x^2}=\frac{x-1}{x^2-3x}=\frac{\left(x-1\right)\left(x+3\right)}{x\left(x-3\right)\left(x+3\right)}\)
Bài 2:
a: \(\dfrac{1}{2x^3y}=\dfrac{6yz^3}{12x^3y^2z^3}\)
\(\dfrac{2}{3xy^2z^3}=\dfrac{2\cdot4x^2}{12x^3y^2z^3}=\dfrac{8x^2}{12x^3y^2z^3}\)
MTC=(x-1)(x-3)(x+6)(x+5)
\(\dfrac{x}{x^2+2x-15}=\dfrac{x}{\left(x+5\right)\left(x-3\right)}=\dfrac{x\left(x-1\right)\left(x+6\right)}{\left(x+5\right)\left(x-3\right)\left(x+6\right)\left(x-1\right)}\)
\(\dfrac{1}{x^2+5x-6}=\dfrac{1}{\left(x+6\right)\left(x-1\right)}=\dfrac{\left(x-3\right)\left(x+5\right)}{\left(x-1\right)\left(x-3\right)\left(x+5\right)\left(x+6\right)}\)
\(\dfrac{1}{-x^2+4x-3}=-\dfrac{1}{\left(x-1\right)\left(x-3\right)}=\dfrac{-\left(x+5\right)\left(x+6\right)}{\left(x-1\right)\left(x-3\right)\left(x+5\right)\left(x+6\right)}\)