Cho a,b,c > 0 thỏa mãn ab+bc+ac=3abc. Chứng minh rằng:
\(\dfrac{1}{\sqrt{7a^2-12ab+7b^2}}+\dfrac{1}{\sqrt{7b^2-13bc+7c^2}}+\dfrac{1}{\sqrt{7a^2-12ac+7c^2}}\le3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{\sqrt{b^2+a^2+a^2}}{ab}\ge\dfrac{\sqrt{\dfrac{1}{3}\left(b+a+a\right)^2}}{ab}=\dfrac{1}{\sqrt{3}}\left(\dfrac{1}{a}+\dfrac{2}{b}\right)\)
Tương tự: \(\dfrac{\sqrt{c^2+2b^2}}{bc}\ge\dfrac{1}{\sqrt{3}}\left(\dfrac{1}{b}+\dfrac{2}{c}\right)\) ; \(\dfrac{\sqrt{a^2+2c^2}}{ac}\ge\dfrac{1}{\sqrt{3}}\left(\dfrac{1}{c}+\dfrac{2}{a}\right)\)
Cộng vế với vế:
\(VT\ge\dfrac{1}{\sqrt{3}}\left(\dfrac{3}{a}+\dfrac{3}{b}+\dfrac{3}{c}\right)=\sqrt{3}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=1980\sqrt{3}\)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{3}{1980}\)
Áp dụng BĐT Côsi-Shaw ta có :
\(A=\dfrac{1}{\sqrt[3]{a+7b}}+\dfrac{1}{\sqrt[3]{b+7c}}+\dfrac{1}{\sqrt[3]{c+7a}}\ge\dfrac{9}{\sqrt[3]{a+7b}+\sqrt[3]{b+7c}+\sqrt[3]{c+7a}}\)
Đặt \(B=\sqrt[3]{a+7b}+\sqrt[3]{b+7c}+\sqrt[3]{c+7a}\)
Ta sẽ có : \(\dfrac{9}{B}\)
Mà : \(\dfrac{9}{B}\) đạt GTNN khi B lớn nhất .
Áp dụng BĐT Cô si , ta có :
\(\sqrt[3]{\left(a+7b\right).8.8}\le\dfrac{a+7b+8+8}{3}\) ( 1 )
Tương tự , ta có :
\(\sqrt[3]{\left(b+7c\right).8.8}\le\dfrac{b+7c+8+8}{3}\left(2\right)\)
\(\sqrt[3]{\left(c+7a\right).8.8}\le\dfrac{c+7a+8+8}{3}\) \(\left(3\right)\)
Cộng từng vế của \(\left(1\right),\left(2\right),\left(3\right)\) ta có :
\(4.\left(\sqrt[3]{a+7b}+\sqrt[3]{b+7c}+\sqrt[3]{c+7a}\right)\le\dfrac{8}{3}\left(a+b+c\right)+16\)
\(\Leftrightarrow4B\le24\)
\(\Leftrightarrow B\le6\)
Vậy \(Max_B=6\) \(\Leftrightarrow Min_A=\dfrac{9}{6}=\dfrac{3}{2}\)
Dấu " = " xảy ra khi \(a=b=c=1.\)
Sai thôi nha
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow A\ge3\sqrt[3]{\dfrac{1}{\sqrt[3]{\left(a+7b\right)\left(b+7c\right)\left(c+7a\right)}}}\) (1)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\sqrt[3]{\left(a+7b\right)\left(b+7c\right)\left(c+7a\right)}\le\dfrac{8\left(a+b+c\right)}{3}=8\)
\(\Rightarrow\dfrac{1}{\sqrt[3]{\left(a+7b\right)\left(b+7c\right)\left(c+7a\right)}}\ge\dfrac{1}{8}\)
\(\Rightarrow3\sqrt[3]{\dfrac{1}{\sqrt[3]{\left(a+7b\right)\left(b+7c\right)\left(c+7a\right)}}}\ge3\sqrt[3]{\dfrac{1}{8}}=\dfrac{3}{2}\) (2)
Từ (1) và (2)
\(\Rightarrow A\ge\dfrac{3}{2}\)
\(\Rightarrow A_{min}=\dfrac{3}{2}\)
Dấu " = " xảy ra khi \(a=b=c=1\)
\(BDT\Leftrightarrow2a^4b+2b^4c+2c^4a+3ab^4+3bc^4+3ca^4\ge5a^2b^2c+5a^2bc^2+5ab^2c^2\)
Ta chứng minh được \(ab^4+bc^4+ca^4\ge a^2b^2c+a^2bc^2+ab^2c^2\)
\(\Leftrightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge ab+bc+ca\)
\(VT=\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}=\dfrac{a^4}{ab}+\dfrac{b^4}{bc}+\dfrac{c^4}{ac}\)
\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\ge\dfrac{\left(ab+bc+ca\right)^2}{ab+bc+ca}=VP\)
Vậy ta cần chứng minh \(2a^4b+2b^4c+2c^4a+2ab^4+2bc^4+2ca^4\ge4a^2b^2c+4a^2bc^2+4ab^2c^2\)
\(\Leftrightarrow\sum_{cyc}\left(2c^3+bc^2-b^2c+ac^2-a^2c+3ab^2+3a^2b\right)\left(a-b\right)^2\ge0\)
Dấu "=" xảy ra khi \(a=b=c\)
nhầm mọi người ơi chứng minh cho mình <=\(\dfrac{3}{\sqrt{2}}\)
Bạn viết đề sai, nếu VT là \(\sum\dfrac{1}{\sqrt{7a^2-12ab+b^2}}\) thì vế phải là \(\dfrac{3}{\sqrt{2}}\)
VT là \(\sum\dfrac{1}{\sqrt{7a^2-13ab+7b^2}}\) thì VP mới là 3 được
Từ \(ab+bc+ac=3abc\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\) (chia 2 vế cho abc)
Ta có \(\dfrac{1}{\sqrt{7\left(a^2+b^2\right)-12ab}}\le\dfrac{1}{\sqrt{14ab-12ab}}=\dfrac{1}{\sqrt{2ab}}\)
Tương tự\(\dfrac{1}{\sqrt{7b^2-12bc+7c^2}}\le\dfrac{1}{\sqrt{2bc}}\) ; \(\dfrac{1}{\sqrt{7a^2-12ac+7c^2}}\le\dfrac{1}{\sqrt{2ac}}\)
Cộng vế với vế:
\(VT\le\dfrac{1}{\sqrt{2}}\left(\dfrac{1}{\sqrt{ab}}+\dfrac{1}{\sqrt{bc}}+\dfrac{1}{\sqrt{ac}}\right)\le\dfrac{1}{\sqrt{2}}\sqrt{\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2}=\dfrac{3}{\sqrt{2}}\)
Dấu "=" xảy ra khi a=b=c=1