CMR : A = (9m + 1).(9m + 2).(9m + 3).(9m + 4) chia hết cho 5 với mọi m thuộc N
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Giải:
Đặt \(A=n^3+3n^2-n-3\) ta có
\(A=n^3+3n^2-n-3=n^2\left(n+3\right)-\left(n+3\right)\)
\(=\left(n^2-1\right)\left(n+3\right)=\left(n+1\right)\left(n-1\right)\left(n+3\right)\)
Thay \(n=2k+1\left(k\in Z\right)\) ta được:
\(A=\left(2k+2\right)2k\left(2k+4\right)=\) \(2\left(k+1\right).2k.2\left(k+2\right)\)
\(=8\left(k+1\right)k\left(k+2\right)\)
Mà \(\left(k+1\right)k\left(k+2\right)\) là tích của \(3\) số tự nhiên nhiên tiếp nên chia hết cho \(6\) \(\Rightarrow A⋮8.6=48\)
Vậy \(n^3+3n^2-n-3\) \(⋮48\forall x\in Z;x\) lẻ (Đpcm)
\(\left(m+11n\right)⋮12\Rightarrow-3\left(m+11n\right)⋮12\)
\(\Leftrightarrow\left(-3m-33n+12m+36n\right)⋮12\)
\(\Leftrightarrow\left(9m+3n\right)⋮12\)
Ta có : m +11n \(⋮\) 12
<=> 9m + 99n \(⋮\) 12
Mà [( 9m + 99n) - (9m +3n) ] = 96n \(⋮\) 12
Vì 9m + 99n \(⋮\) 12 ; 96n \(⋮\) 12
Nên 9m+3n \(⋮\)12 ( đpcm)
Cho A= ( 5m^2 - 8m^2 - 9m^2)( -n^3 + 4n^3)
Với giá trị nào m,n thì A ≥ 0
A= ( 5m^2 - 8m^2 - 9m^2)( -n^3 + 4n^3)
A= -12m^2/3n^3
= -4m^2/n^3
do m^2>=0 với mọi m
nên A>=0
=> n<0 d0 -4<0
vậy A ≥ 0 khi n<0 vầ m bất kì
bn lm kiểu j v toàn sai hết trơn ==
m3 - 9m2 + 27m - 27
=(x-3)3.GTBT là (2-3)3=-13=-1
- Áp dụng BĐT cauchuy : \(\left\{{}\begin{matrix}9m^2+n^2\ge2\sqrt{9m^2n^2}=6mn\\\dfrac{1}{9m^2}+\dfrac{1}{n^2}\ge2\sqrt{\dfrac{1}{9m^2n^2}}=\dfrac{2}{3mn}\end{matrix}\right.\)
\(\Rightarrow\left(9m^2+n^2\right)\left(\dfrac{1}{9m^2}+\dfrac{1}{n^2}\right)\ge6mn.\dfrac{2}{3mn}=4\left(1\right)\)
- Dấu " = " xảy ra <=> \(9m^2=n^2\)\(\Leftrightarrow\left(3m-n\right)\left(3m+n\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}n=3m\\n=-3m\end{matrix}\right.\)
Mà m, n > 0
\(\Rightarrow n=3m\)
Toi co dap an giong VU KHANH LINH