K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2015

đặt a^2010+2009=b

\(\Rightarrow\frac{b+1}{\sqrt{b}}\)

ta có : b+1\(\ge\)2\(\sqrt{b}\)         ( cô - si)

\(\frac{b+1}{\sqrt{b}}\ge2\)

dấu = xảy ra \(\Leftrightarrow b=1\)

\(\Rightarrowđpcm\)
 

8 tháng 11 2014

Lấy vế trái trừ vế phải ta có:

\(\frac{2010}{\sqrt{2009}}+\frac{2009}{\sqrt{2010}}-\sqrt{2009}-\sqrt{2010}=\)\(\frac{2010}{\sqrt{2009}}+\frac{2009}{\sqrt{2010}}-\frac{2009}{\sqrt{2009}}-\frac{2010}{\sqrt{2010}}\)=\(\frac{1}{\sqrt{2009}}-\frac{1}{\sqrt{2010}}\) (1)

2009<2010 lên biểu thức (1) >0

 

21 tháng 2 2019
  1. TA CÓ A>\(\frac{2010}{2009^2+1+2008}\) +\(\frac{2010}{2009^2+2+2007}\) +...+\(\frac{2010}{2009^2+2009}\)                                                     \(\Rightarrow\)A>2009.\(\frac{2010}{2009^2+2009}\)\(\Rightarrow\)A>\(\frac{2009.2010}{2009.2010}\) \(\Rightarrow\) A>1   (1)                                                                         2.TA CÓ A<\(\frac{2010}{2009^2}\) +\(\frac{2010}{2009^2}\) +...+\(\frac{2010}{2009^2}\)                                                                                               \(\Rightarrow\) A<2009.\(\frac{2010}{2009^2}\) \(\Rightarrow\) A<\(\frac{2010}{2009}\) <2 \(\Rightarrow\) A<2     (2)                                                                                          TỪ (1) VÀ (2) SUY RA 1<A<2 .VẬY A KHÔNG PHẢI SỐ NGUYÊN DƯƠNG    (dpcm)
30 tháng 7 2019

\(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+........+\frac{1}{2010\sqrt{2009}+2009\sqrt{2010}}=\frac{1}{\sqrt{1}\sqrt{2}\left(\sqrt{1}+\sqrt{2}\right)}+\frac{1}{\sqrt{2}\sqrt{3}\left(\sqrt{2}+\sqrt{3}\right)}+........+\frac{1}{\sqrt{2009}\sqrt{2010}\left(\sqrt{2009}+\sqrt{2010}\right)}\)

\(=\frac{\left(\sqrt{2010}-\sqrt{2009}\right)\left(\sqrt{2010}+\sqrt{2009}\right)}{\sqrt{2009}\sqrt{2010}\left(\sqrt{2010}+\sqrt{2009}\right)}+.......+\frac{\left(\sqrt{2}-\sqrt{1}\right)\left(\sqrt{2}+\sqrt{1}\right)}{\sqrt{2}\sqrt{1}\left(\sqrt{2}+\sqrt{1}\right)}=1-\frac{1}{\sqrt{2010}}=1-\frac{\sqrt{2010}}{2010}\)

21 tháng 4 2019

A=\(\frac{a^{2010}+2009+1}{\sqrt{a^{2010}+2009}}\)

=\(\sqrt{a^{2010}+2009}+\frac{1}{\sqrt{a^{2010}+2009}}\)

Áp dụng bdt cosi cho 2 số  ko âm

ta đc: A >= @

dấu = xảy ra khi a^2010+2009=1

                         a^2010=-2008( vô lý)

 => dấu = ko xảy ra

vậy A>2

11 tháng 7 2017

thầy ơi bài này làm rồi

11 tháng 7 2017

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk,c=dk\)

Vậy:

\(\frac{a\cdot c}{b\cdot d}=\frac{bk\cdot dk}{b\cdot d}=\frac{k^2\cdot\left[b\cdot d\right]}{b\cdot d}=k^2\)

\(\frac{2009a^2+2010c^2}{2009b^2+2010d^2}=\frac{2009\left[bk\right]^2+2010\left[dk\right]^2}{2009b^2+2010d^2}=\frac{2009\cdot b^2k^2+201d^2k^2}{2009b^2+2010d^2}=\frac{k^2\left[2009b^2+2010d^2\right]}{2009b^2+2010d^2}=k^2\)Vậy khi \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{ac}{bd}=\frac{2009a^2+2010c^2}{2009b^2+2010d^2}\)

29 tháng 9 2015

Câu a:

Có dạng tổng quát:\(\frac{1}{\left(k+1\right)\sqrt{k}+k\sqrt{x+1}}=\frac{1}{\sqrt{\left(k+1\right)k}\left(\sqrt{k+1}+\sqrt{k}\right)}=\frac{\sqrt{k+1}-\sqrt{k}}{\sqrt{\left(k+1\right)k}}=\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{k-1}}\)

Áp dụng kết quả trên suy ra câu a