cho hình tam giác ABCD (AB<AD) kẻ DH vuông góc với AC gọi M ,N,K lần lượt là trung điểm của AH, DH và BC
A) tứ giác MNCK là hình gì? vì sao?
B)biết AD bằng 3 cm, BC bằng 4cm tính đọ dài của DH
C) chứng minh CN vuông góc với DM
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: \(\widehat{IAB}=\widehat{IDC}\)
\(\widehat{IBA}=\widehat{ICD}\)
mà \(\widehat{IDC}=\widehat{ICD}\)
nên \(\widehat{IAB}=\widehat{IBA}\)
hay ΔIAB cân tại I
b: Xét ΔIBD và ΔIAC có
IB=IA
\(\widehat{BID}\) chung
ID=IC
Do đó: ΔIBD=ΔIAC
Trong hình thang cân ABCD (AB//CD) đặt m là sđ góc D (m<180 độ ) thì:D=C=m và A=B=180 độ-m
Tam giác ABD cân tại A =>^ABD=^ADB
AB//CD tạo với cát tuyến BD 2 góc so le trong ^ABD=^CDB
Suy ra ^ADB=^CDB,lại có tia DB nằm giữa 2 tia DA và DC nên tia DB là tia phân giác ^ADC=m độ
Vậy ^ABD= (1/2).m
Tam giác BCD cân tại D =>^DBC=^DCB=m độ
Tia BD nằm giữa 2 tia BA,BC nên ^ABC=^ABD+^DBC=(1/2).m+m (độ)
=(3/2).m (độ)
Mà ^ABC=180-m (độ),nên (3/2).m(độ)=180-m(độ)
hay 5/2.m=180 độ => m=360độ:5=72 độ
và 180 độ-m=108 độ
Trả lời : Trong hình thang cân ABCD kể trên,sđ 2 góc nhọn C và D là 72 độ,sđ 2 góc còn lại là 108 độ
a: Ta có: \(\widehat{IAB}=\widehat{IDC}\)
\(\widehat{IBA}=\widehat{ICD}\)
mà \(\widehat{IDC}=\widehat{ICD}\)
nên \(\widehat{IAB}=\widehat{IBA}\)
hay ΔIAB cân tại I
b: Xét ΔIBD và ΔIAC có
IB=IA
\(\widehat{BID}\) chung
ID=IC
Do đó: ΔIBD=ΔIAC