Rút gọn rồi tính GTBT:
\(A=\dfrac{\left(x^2+2x\right)\left(x-2\right)^2}{\left(x^3-4x\right)\left(x+1\right)}\) với \(x=\dfrac{1}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{\left(x^2+2x\right).\left(x-2\right)^2}{\left(x^3-4x\right).\left(x+1\right)}\)
\(A=\frac{\left(x^2+2x\right).\left(x^2-4x+4\right)}{\left(x^3-4x\right).\left(x+1\right)}=\frac{x^4-4x^3+4x^2+2x^3-8x^2+8x}{x^4+x^3-4x^2-4x}\)
\(A=\frac{x^4-2x^3-4x^2+8x}{x^4+x^3-4x^2-4x}=\frac{x^3.\left(x-2\right)-4x.\left(x-2\right)}{x^3.\left(x+1\right)-4x.\left(x+1\right)}=\frac{\left(x^3-4x\right).\left(x-2\right)}{\left(x^3-4x\right).\left(x+1\right)}=\frac{x-2}{x+1}\)
thay \(x=\frac{1}{2}\Rightarrow A=\frac{\frac{1}{2}-2}{\frac{1}{2}+1}=\frac{-\frac{3}{2}}{\frac{3}{2}}=-1\)
Vậy A=-1
\(A=\dfrac{2x\left(x+1\right)\left(x-2\right)^2}{x\left(x-2\right)\left(x+2\right)\left(x+1\right)}=\dfrac{2\left(x-2\right)}{x+2}\\ A=\dfrac{2\left(\dfrac{1}{2}-2\right)}{\dfrac{1}{2}+2}=\dfrac{2\left(-\dfrac{3}{2}\right)}{\dfrac{5}{2}}=\left(-3\right)\cdot\dfrac{2}{5}=-\dfrac{6}{5}\)
\(B=\dfrac{x\left(x^2-xy+y^2\right)}{\left(x+y\right)\left(x^2-xy+y^2\right)}=\dfrac{x}{x+y}=\dfrac{-5}{-5+10}=\dfrac{-5}{5}=-1\)
\(\frac{\left(2x^3+2x\right)\left(x-2\right)^2}{\left(x^3-4x\right)\left(x+1\right)}\)
\(=\frac{2x\left(x^2+1\right)\left(x-2\right)^2}{x\left(x-2\right)\left(x+2\right)\left(x+1\right)}\)
\(=\frac{2\left(x^2+1\right)\left(x-2\right)}{\left(x+2\right)\left(x+1\right)}\)
Thay x=\(\frac{1}{2}\)
\(=\frac{2\left(\frac{1}{2}^2+1\right)\left(\frac{1}{2}-2\right)}{\left(\frac{1}{2}+2\right)\left(\frac{1}{2}+1\right)}\)
\(=-1\)
a: \(P=\left(\dfrac{3x+6}{2\left(x^2+4\right)}-\dfrac{2x^2-x-10}{\left(x+1\right)\left(x^2+1\right)}\right):\left(\dfrac{10\left(x^2-1\right)+3\left(x^2+1\right)\left(x-1\right)-6\left(x+1\right)\left(x^2+1\right)}{\left(x^2+1\right)\left(x+1\right)\left(x-1\right)\cdot2}\right)\cdot\dfrac{2}{x-1}\)
\(=\left(\dfrac{\left(3x+6\right)\left(x^3+x^2+x+1\right)-\left(2x^2+8\right)\left(2x^2-x-10\right)}{2\left(x^2+4\right)\left(x+1\right)\left(x^2+1\right)}\right)\cdot\dfrac{\left(x^2+1\right)\left(x-1\right)\left(x+1\right)\cdot2}{-3x^3+x^2-3x-13}\cdot\dfrac{2}{x-1}\)
\(=\dfrac{-x^4+11x^3+13x^2+17x+16}{\left(x^2+4\right)}\cdot\dfrac{2}{-3x^3+x^2-3x-13}\)
\(a,\frac{\left(2x^2+2x\right)\left(x-2\right)^2}{\left(x^3-4x\right)\left(x+1\right)}\)
\(=\frac{2x\left(x+1\right)\left(x-2\right)^2}{x\left(x-2\right)\left(x+2\right)\left(x+1\right)}\)
\(=\frac{2\left(x-2\right)}{x+2}\)
Với \(x=\frac{1}{2}\)
\(\Rightarrow\frac{2\left(x-2\right)}{x+2}=\frac{2\left(\frac{1}{2}-2\right)}{\frac{1}{2}+2}=\frac{2.-\frac{3}{2}}{\frac{5}{2}}=-3.\frac{2}{5}=\frac{-6}{5}\)
b,Do x = -5; y = 10=> y = -2x
Thay y = -2x vào biểu thức ta được
\(\frac{x^3-x^2\left(-2x\right)+x\left(-2x\right)^2}{x^3+\left(-2x\right)^3}\)
\(=\frac{x^3+2x^3+2x^2}{x^3-8x^3}\)
\(=\frac{3x^3+2x^2}{-7x^3}=\frac{3}{-7}+\frac{2}{-7x}\)
Thay x = -5 là đc
Bài 2:
a: \(=2x^4-x^3-10x^2-2x^3+x^2+10x=2x^3-3x^3-9x^2+10x\)
b: \(=\left(x^2-15x\right)\left(x^2-7x+3\right)\)
\(=x^4-7x^3+3x^2-15x^3+105x^2-45x\)
\(=x^4-22x^3+108x^2-45x\)
c: \(=12x^5-18x^4+30x^3-24x^2\)
d: \(=-3x^6+2.4x^5-1.2x^4+1.8x^2\)
\(A=\dfrac{\left(x^2+2x\right)\left(x-2\right)^2}{\left(x^3-4x\right)\left(x+1\right)}=\dfrac{x\left(x+2\right)\left(x-2\right)^2}{x\left(x-2\right)\left(x+2\right)\left(x+1\right)}=\dfrac{x-2}{x+1}\)
Với \(x=\dfrac{1}{2}\) ta có: \(A=\dfrac{\dfrac{1}{2}-2}{\dfrac{1}{2}+1}=\dfrac{-\dfrac{3}{2}}{\dfrac{3}{2}}=-1\)
\(A=\dfrac{\left(x^2+2x\right)\left(x-2\right)^2}{\left(x^3-4x\right)\left(x+1\right)}\)
\(=\dfrac{x\left(x+2\right)\left(x-2\right)^2}{x\left(x^2-4\right)\left(x+1\right)}\)
\(=\dfrac{x\left(x+2\right)\left(x-2\right)^2}{x\left(x-2\right)\left(x+2\right)\left(x+1\right)}\)
\(=\dfrac{x-2}{x+1}\)
Thay \(x=\dfrac{1}{2}\) vào bt ta dc :
\(A=\dfrac{\dfrac{1}{2}-2}{\dfrac{1}{2}+1}=-1\)
Vậy...