K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2017

 ta có: a+b+c=1 

<=>(a+b+c)^2=1 

<=>ab+bc+ca=0 (1) 

mặt khác: áp dụng tính chất dãy tỉ số bằng nhau ta có: 

x/a=y/b=z/c=(x+y+z)/(a+b+c)=x+y+z 

<=> x=a(x+y+z) ; y=b(x+y+z) ; z=c(x+y+z) 

=>xy+yz+zx=ab(x+y+z)^2+bc(x+y+z)^2+ca(x... 

<=>xy+yz+zx=(ab+bc+ca)(x+y+z)^2 (2) 

từ (1) và (2) ta có đpcm 

24 tháng 6 2016

1. x = 5

ta cộng các số hạng tren và dưới của tỉ số thứ nhất với tỉ số thứ 3 rồi so sánh với tỉ số thứ 2

1 tháng 2 2018

 \(\left|y-z\right|< 1\)

mà   \(\left|y-z\right|\ge0\)

\(\Rightarrow\)\(\left|y-z\right|=0\)

\(\Leftrightarrow\)\(y-z=0\)

\(\Leftrightarrow\)\(y=z\)

Ta có:   \(\left|x-z\right|< 2017\)  

   \(\Leftrightarrow\)\(\left|x-y\right|< 2017\)(thay  \(z=y\))

   \(\Leftrightarrow\)\(\left|x-y\right|< 2017< 2018\)

   \(\Leftrightarrow\)\(\left|x-y\right|< 2018\)(đpcm)

1 tháng 2 2018

Cảm ơn bạn. Bạn giỏi và tốt quá.May có bạn, ko mình cứ nghĩ cả ngày hôm nay cứ như thằng điên ý. Cái cảm giác mà ko giải đc bài toán nó khó chụi lắm.

22 tháng 4 2018

Với \(a>0\) thì \(\left|a\right|+a=a+a=2a⋮2\)

Với \(a=0\) thì \(\left|a\right|+a=0+0=0⋮2\)

Với \(a< 0\) thì \(\left|a\right|+a=-a+a=0⋮2\)

Vậy với mọi a thì \(\left|a\right|+a⋮2\)

Ta có :\(\left|y-x\right|+\left|z-y\right|+\left|x-z\right|=2017^x+2018^x\)

\(\Rightarrow\left|y-z\right|+y-z+\left|z-y\right|+z-y+\left|x-z\right|+x-z=2017^x+2018^x\)

Vế trái chia hết cho 2 mà vế phải \(2018^x+2017^x\) không chia hết cho 2(vô lí)

Vậy không có x,y,z thỏa mãn

17 tháng 2 2021

lớp 7 sao giải đc

15 tháng 10 2017

làm giúp mk bài này nhá                                                                                                              0+1+2+...+2017  có bao nhiêu số hạng

                                                                                                          

5 tháng 12 2023

a) 3x = 7y ⇒ x/7 = y/3

⇒ x/7 = 2y/6

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

x/7 = 2y/6 = (x - 2y)/(7 - 6) = 2/1 = 2

x/7 = 2 ⇒ x = 2.7 = 14

y/3 = 2 ⇒ y = 2.3 = 6

Vậy x = 14; y = 6

b) x/2 = y/3 ⇒ x/6 = y/9 (1)

x/3 = z/4 ⇒ x/6 = z/8 (2)

Từ (1) và (2) ⇒ x/6 = y/9 = z/8

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

x/6 = y/9 = z/8 = (x + y - z)/(6 + 9 - 8) = 7/7 = 1

x/6 = 1 ⇒ x = 1.6 = 6

y/9 = 1 ⇒ y = 1.9 = 9

z/8 = 1 ⇒ z = 1.8 = 8

Vậy x = 6; y = 9; z = 8

c) x/2 = y/3 ⇒ x/10 = y/15 ⇒ 2x/20 = y/15 (3)

y/5 = z/4 ⇒ y/15 = z/12 (4)

Từ (3) và (4) ⇒ 2x/20 = y/15 = z/12

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

2x/20 = y/15 = z/12 = (2x - y + z)/(20 - 15 + 12) = 17/17 = 1

2x/20 = 1 ⇒ x = 1.20 : 2 = 10

y/15 = 1 ⇒ y = 1.15 = 15

z/12 = 1 ⇒ z = 1.12 = 12

Vậy x = 10; y = 15; z = 12

22 tháng 5 2017

\(\frac{x^2}{2y}+\frac{y^2}{2x}+\frac{y^2}{2z}+\frac{z^2}{2y}+\frac{z^2}{2x}+\frac{x^2}{2z}\ge\frac{\left(2x+2y+2z\right)^2}{4\left(x+y+z\right)}=x+y+z\)