Cho tam giac ABC. Tren tia doi cua tia CA lay diem D sao cho CD = CA. Tren tia doi cua tia CB lay diem E sao cho CE = CB. Qua C ve duong thang m // voi AB. Chung minh rang :
a) tam giac ABC = tam giac DEC
b) AB // DE
c) m//DE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Ta có: ΔABC cân tại A => góc ABC = góc ACB
mà ACB = ECN ( 2 góc đối đinh )
==> ABD = ECN ( vì D ∈ BC )
Xét ΔDBM và ΔECN có:
+ BDM= NEC = 90°
+ BD = EC (gt)
+ ABD = ECN (cmt)
==> ΔDBM = ΔECN ( c.g.vuông - g.n.kề )
==> MD = NE ( 2 cạnh tương ứng ) ( đpcm )
a) Xét tam giác BMC và tam giác DMA có:
AM=AC( M là trung điểm của AC)
AMD^= BMC^( 2 góc đối đỉnh)
BM=MD( gt)
Suy ra: tam giác BMC= tam giác DMA( c.g.c)( đpcm)
b) Xét tam giác DMC và tam giác BMA có:
MB= MD( gt)
DMC^= AMB^( đối đỉnh)
MA=MC( M là trung điểm của AC)
Suy ra: Tam giác DMC= tam giác BMA( c.g.c)
=> AB=DC( 2 cạnh tương ứng)(1)
Mà AB= AC( Tam giác ABC cân tại A)(2)
Từ (1) và (2)
=> DC=AC
=> tam giác ADC cân tại C( đpcm)
c) có tam giác BMC = tam giác DMA(cmt)
=> BM=DM ( 2 cạnh t/ ứ)
=> M là trung điểm của BD
xét tam giác BDE có
EM là trung tuyến ứng vs BD ( M là trung điểm của BD)
CI là trung tuyến ứng vs BE ( I là trung điểm của BE)
mà EM giao vs CI tại C
=> C là trọng tâm
=> DC là trung tuyến ứng vs BE
mà CI cũng là đường trung tuyến ứng vs BE(cmt)
=> DC trùng với CI
=> D,C,I thẳng hàng
vậy DC đi qua trung điểm I của BÉ
123456 bua the ha nguyen khac vinh