Tìm a,b \(\in\) Q sao cho: a+b = a.b = a:b (b \(\ne\)0)
Làm nhanh hộ mình nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Nguyen Hoang Thao Vy - Toán lớp 7 - Học toán với OnlineMath
bài của bạn giống bài của Vũ Thị Thúy, mìh đã giải cho bạn ấy rồi đó. bn xem bài của bn ấy nhé
K ĐÚNG NHA
Đặt a + b = ab = a : b = k
Ta có : a/b = k => a = kb
=> kb + b = kbb = k
=> (k + 1) b = kb2 = k
Từ kb2 = k
=> kb2 - k = 0
=> k (b2 - 1) = 0
=> k = 0 hoặc b2 - 1 = 0
=> k = 0 hoặc b = ±1
Trường hợp k = 0 => a = 0
=> 0 + b = 0 => b = 0 (loại vì b ≠ 0)
Trường hợp b = 1
=> a + 1 = a . 1 => a + 1 = a => 1 = 0 (vô lí)
=> b = 1 ko thỏa mãn
Trường hợp b = -1
=> a - 1 = a (-1) => a - 1 = -a => a - 1 +a = 0 => 2a - 1 = 0 => a = 1/2
a/ a - b = 2( a+ b)
a - b = 2a + 2b
a - 2a = 2b + b
-a = 3b
Ta có -a = 3b => a = - 3b => a: b = -3b: b = -3
a - b = 2( a+ b) = - 3
=> a - b = -3 ; 2(a+b) = - 3 => a + b = -3/2
Quay về dạng tìm hai số khi biết tổng và hiệu
b/ a - b = a.b => a = ab + b = b (a+1)
Thay a = b(a + 1) vào a- b = a : b ta có
\(a-b=\frac{b\left(a+1\right)}{b}=a+1\)
=> a - b = a + 1 => a - a - b = 1 => -b = 1 =>b = -1
Ta có a - b = ab
=> a +1 = -a => 2a = - 1 => a = -1/2
Vậy b = -1 ; a = -1/2
b)
Ta có: a : b = ab => \(\frac{ab}{b^2}\) = ab => b2 = 1 => b = 1 hoặc -1
Với b = 1, a + b = a.b => a + 1 = a (vô lí)
Với b = - 1, a + b = ab => a -1 = -a => 2a = 1 => a = \(\frac{1}{2}\) (thỏa mãn)
Vậy cặp số hữu tỉ cần tìm là \(\frac{1}{2}\) và -1
Câu hỏi của Trần ngọc nhi - Toán lớp 7 - Học toán với OnlineMath
Ta có : a-b=2(a+b)
a-b= 2a+2b
a-2a=b+2b
-a= 3b
hay a= -3b
Lại có: a-b= a:b
-3b-b=-3b:b
-4b= -3
b= \(\frac{3}{4}\)
Mà a= -3b => a=-3.\(\frac{3}{4}\)=\(\frac{-9}{4}\)
Vậy a= \(\frac{-9}{4}\); b=\(\frac{3}{4}\)
ĐK: a,b thuộc Q
Ta có: a/b = ab => ab/b^2 = ab => b^2 = 1 => b = 1 hoặc -1
Với b = 1, a + b = a.b => a + 1 = a (vô lí)
Với b = - 1, a + b = ab => a -1 = -a => 2a = 1 => a = 1/2 (thỏa Đk)
Vậy cặp số hữu tỉ cần tìm là 1/2 và -1
ta có :
a+b=a.b=>a=a.b-b=b(a-1)
=>a:b=a-1=a+b
=>b=-1
=>a=-1(a-1)=-a+1
=>a+a=1
=>2a=1
=>a=1/2
Vậy ........
\(M=\frac{x+3}{7+x}=\frac{x+3}{x+7}\)
(*) M>0 <=> x+3 và x+7 cùng dấu
\(\left(+\right)\hept{\begin{cases}x+3< 0\\x+7< 0\end{cases}=>\hept{\begin{cases}x< -3\\x< -7\end{cases}=>x< -7}}\)
\(\left(+\right)\hept{\begin{cases}x+3>0\\x+7>0\end{cases}=>\hept{\begin{cases}x>-3\\x>-7\end{cases}=>x>-3}}\)
Vậy x<-7 hoặc x>-3 thì thỏa mãn M>0
(*)M<0 <=> x+3 và x+7 trái dấu
Mà x+3<x+7
\(=>\hept{\begin{cases}x+3< 0\\x+7>0\end{cases}=>\hept{\begin{cases}x< -3\\x>-7\end{cases}=>-7< x< -3}}\)
Vậy......
(*)M nguyên <=> x+3 chia hết cho x+7
<=>(x+7)-4 chia hết cho x+7
Mà x+7 chia hết cho x+7
=>-4 chia hết cho x+7=>x+7 E Ư(-4)={...},tới đây bn đã có thể tự làm tiếp rồi nhé
(*)M>1 \(< =>M=\frac{x+3}{x+7}>1< =>\frac{x+3}{x+7}-1>0< =>\frac{x+3-x-7}{x+7}>0< =>\frac{-4}{x+7}>0< =>x< -7\)
a + b = a . b => a = a.b - b = b ( a - 1 )
Thay a = b ( a - 1 ) vào a + b = a : b ta có :
\(a+b=\frac{b\left(a-1\right)}{b}=a-1\)
=> a + b = a - 1
=> a + b - a = -1
=> b = -1
Ta có :
a . b = a + b
=> a . ( - 1 ) = a + ( - 1 )
=> - a = a - 1
=> - 2a = -1 => a = \(\frac{1}{2}\)
Vậy a = \(\frac{1}{2}\); b = -1
Ta có: a/b = ab => ab/b^2 = ab => b^2 = 1 => b = 1 hoặc -1
Với b = 1, a + b = a.b => a + 1 = a (vô lí)
Với b = - 1, a + b = ab => a -1 = -a => 2a = 1 => a = 1/2 (thỏa Đk)
Vậy cặp số hữu tỉ cần tìm là 1/2 và -1