K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2021

a)
tam giác ABC cân tại A có 
AM là đường trung tuyến => M là trung điểm của BC
N là trung điểm AC
=> MN là đường trung bình của tm giác ABC (1)
=>AB=2MN
=>AB=2.3=6cm
b)
từ (1) => MN//AB => Tứ giác ABMN là hình thang 

23 tháng 9 2021

nhanh thế mới kịp vẽ cái hềnh khocroi

b: Xét ΔABC có
M là trung điểm của BC

N là trung điểm của AC

Do đó: MN là đường trung bình của ΔABC

Suy ra: MN//AB

hay ABMN là hình thang

12 tháng 10 2021

a) Xét tam giác ABC có:

M là trung điểm BC(AM là trung tuyến)

I là trung điểm AB(gt)

=> MI là đường trung bình

=> MI//AC

=> ACMI là hthang

b) Ta có: MI là đường trung bình của tam giác ABC (cmt)

\(\Rightarrow AC=2.MI=2.8=16\left(cm\right)\)

21 tháng 12 2021

\(a,\) Vì AM là trung tuyến tam giác cân tại A nên AM cũng là đường cao

Vì D là trung điểm AC và MN nên AMCN là hình bình hành

Mà \(AM\bot BC\Rightarrow AM\bot MC\)

Do đó: AMCN là hình chữ nhật

\(b,\) Vì AMCN là hcn nên \(AM=AC;AN=MC\)

Mà \(AB=AC;MB=MC\Rightarrow AM=AB;AN=MB\)

Vậy ABMN là hình bình hành

\(c,\) Ta có \(BM=MC=\dfrac{1}{2}BC=3(cm)\)

Áp dụng PTG vào tam giác ABM vuông M

\(AM=\sqrt{AB^2-BM^2}=4\left(cm\right)\)

Do đó \(S_{AMCN}=AM\cdot MC=4\cdot3=12\left(cm^2\right)\)

21 tháng 12 2021

a) Xét tam giác ABC cân tại A: AM là trung tuyến (gt).

\(\Rightarrow\) AM là đường cao (Tính chất các đường trong tam giác cân).

\(\Rightarrow\) AM \(\perp\) BC. \(\Rightarrow\) \(\widehat{AMC}\) = 90o.

Xét tứ giác AMCN có:

+ D là trung điểm của MN (N đối xứng với M qua D).

+ D là trung điểm của AC (gt).

\(\Rightarrow\) Tứ giác AMCN là hình bình hành (dhnb).

Lại có:  \(\widehat{AMC}\) = 90o (cmt).

 \(\Rightarrow\) Tứ giác AMCN là hình chữ nhật (dhnb).

b) Tứ giác AMCN là hình chữ nhật (cmt).

\(\Rightarrow\) AN // MC (Tính chất hình chữ nhật).

\(\Rightarrow\) AN // BM.

Vì AM là trung tuyến của tam giác ABC (gt). \(\Rightarrow\) M là trung điểm của BC.

\(\Rightarrow\) BM = MC = \(\dfrac{1}{2}\)BC.

Mà AN = MC (Tứ giác AMCN là hình chữ nhật).

\(\Rightarrow\) BM = MC = AN.

Xét tứ giác ABMN có:

+ BM = AN (cmt).

+ BM // AN (cmt).

\(\Rightarrow\) Tứ giác ABMN là hình bình hành (dhnb).

c) Ta có: BM = MC = \(\dfrac{1}{2}\)BC = \(\dfrac{1}{2}\).6 = 3 (cm).

Xét tam giác AMB vuông tại M có:

AB2 = AM2 + BM2 (Định lý Pytago).

Thay số: 52 = AM2 + 32.

\(\Leftrightarrow\) 25 = AM2 + 9. \(\Leftrightarrow\) AM2 = 16. \(\Leftrightarrow\) AM = 4 (cm).

Diện tích hình chữ nhật AMCN là: 3 . 4 = 12 (cm2).

26 tháng 9 2021

a,  Ta có tam giác ABC cân tại A  có

AM là đg trung tuyến đồng thời là đg cao

Xét tứ giác ANCM có

D là trung điểm của AC ( gt)

D là trung điểm của MN ( N đối xứng M qua D-gt)

=> ANCM là hình bình hành

mà có góc AMC = 90 độ ( AM là đg cao-cmt)

=> ANCM là hình chữ nhật

26 tháng 9 2021

b, Ta có AMCN là hình chữ nhật (cmt)

=> MN = AC ; NA = MC

Ta có 

AB = AC ( tam giác ABC là tam giác cân -gt)

mà MN = AC (cmt)

=> AB = MN

Lại có MC = MB ( AM là trung tuyến -gt)

mà MC = AN ( cmt)

=> MB = AN

Xét tứ giác ANBM có

MN = AB (cmt)

NA = MB ( cmt)

=> NABM là hình bình hành (dhnb)

 

a: Xét ΔCPB có

M là trung điểm của BC

N là trung điểm của CP

Do đó: MN là đường trung bình

=>MN//PB

Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

Xét tứ giác BMNP có MN//PB

nên BMNP là hình thang

mà \(\widehat{NMB}=90^0\)

nên BMNP là hình thang vuông

b: Ta có: NM=PB/2

nên AM=PB

Xét tứ giác AMBP có 

AM//PB

AM=PB

Do đó: AMBP là hình bình hành

mà MA=MB

nên AMBP là hình thoi

mà \(\widehat{AMB}=90^0\)

nên AMBP là hình vuông

12 tháng 10 2021

a: Xét ΔABC có

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình của ΔABC

Suy ra: MN//BC và \(MN=\dfrac{BC}{2}=\dfrac{10}{2}=5\left(cm\right)\)

12 tháng 10 2021

a)Vì M là trung điểm của AB, N là trung điểm của AC=>MN là đường trung bình của tam ΔABC=>MN=1/2 BC mà BC = 10cm nên MN = 5cm

b)Vì MN là đường trung bình của tam ΔABC=>MN//BC=> Tứ giác BMNC là hình thang

c)Theo đề bài ta có  ΔABC cân tại A => Góc B=C => Tứ giác BMNC là hình thang cân

 

Câu 1: Tam giác ABC vuông tại A có AM là đường trung tuyến ứng với cạnh huyền BC

 => AM=\(\frac{1}{2}\)BC mà AM=6 cm=> BC=12cm.

Tam giác ANB vuông tại A có AN2+AB2=BN2 (Theo Pytago)   mà BN=9cm (gt)

=>AN2+AB2=81        Lại có AN=\(\frac{1}{2}\)AC =>\(\frac{1}{2}\)AC2+AB2=81     (1)

Tam giác ABC vuông tại A có: AC2+AB2=BC=> BC2 - AB= AC2   (2)

Từ (1) và (2) suy ra \(\frac{1}{4}\)* (BC- AB2)+AB2=81       mà BC=12(cmt)

=> 36 - \(\frac{1}{4}\)AB2+AB2=81

=> 36+\(\frac{3}{4}\)AB2=81

=> AB2=60=>AB=\(\sqrt{60}\)

C2

Cho hình thang cân ABCD có đáy lớn CD = 1

C4

Câu hỏi của Thiên An - Toán lớp 9 - Học toán với OnlineMath