K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2018

\(y=-2x+1\left(d_1\right)\)

\(y=x+7\left(d_2\right)\)

\(y=\left(2m-1\right)x-m+7\left(d\right)\)

Ta có pt tọa độ giao điểm của 2 đường d1và d2

\(-2x+1=x+7\)

\(\Leftrightarrow-3x=6\)

\(\Leftrightarrow x=-2\rightarrow y=-2+7=5\)

Ta có điểm (-2;5)

Để 3 đường thẳng đồng quy thì (d) phải đi qua điểm(-2;5)

Thay vào (d) ta được:

\(\left(2m-1\right).\left(-2\right)-m+7=5\)

\(\Leftrightarrow-4m+2-m+7=5\)

\(\Leftrightarrow-5m=-4\)

\(\Leftrightarrow m=\dfrac{4}{5}\)

Vậy 3 đường đồng quy thì m=\(\dfrac{4}{5}\)

*Chúc bạn học tốt...tick cho mik nha!!

24 tháng 8 2021

Mik chưa học đến lớp 9 nên chỉ tìm dc x, y thôi chứ tìm tọa độ mik chưa học.

\(\left[{}\begin{matrix}y=2x+4\\y=2x-3\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}2x-y=-4\\2x-y=3\end{matrix}\right.\)

Dễ thấy Hệ Phương Trình không có nghiệm nào

=> HPT vô nghiệm

AH
Akai Haruma
Giáo viên
24 tháng 8 2021

Lời giải:
Ta thấy hệ số góc của 2 đường thẳng bằng nhau (bằng $2$) nên 2 đường thẳng này song song

Do đó chúng không có giao điểm.

10 tháng 7 2017

1.Để  đường thẳng  \(y=\left(m-1\right)x+3\) song song với đường thẳng \(y=2x+1\)

thì \(m-1=2\Rightarrow m=3\)

2. a. Với \(m=-2\Rightarrow\)\(\hept{\begin{cases}-2x-2y=3\\3x-2y=4\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1}{5}\\y=-\frac{17}{10}\end{cases}}\)

b. Với \(m=0\Rightarrow\hept{\begin{cases}-2y=3\\3x=4\end{cases}\Rightarrow\hept{\begin{cases}y=-\frac{3}{2}\\x=\frac{4}{3}\end{cases}\left(l\right)}}\)

Với \(m\ne0\Rightarrow\hept{\begin{cases}m^2x-2my=3m\\6x+2my=8\end{cases}\Rightarrow\left(m^2+6\right)x=3m+8}\)

\(\Rightarrow x=\frac{3m+8}{m^2+6}\)\(\Rightarrow y=\frac{mx-3}{2}=\frac{m\left(3m+8\right)-3\left(m^2+6\right)}{2\left(m^2+6\right)}=\frac{4m-9}{m^2+6}\)

Để \(x+y=5\Rightarrow\frac{3m+8}{m^2+6}+\frac{4m-9}{m^2+6}=5\Rightarrow7m-1=5m^2+30\)

\(\Rightarrow-5m^2+7m-31=0\)

Ta thấy phương trình vô nghiệm nên không tồn tại m để \(x+y=5\)

24 tháng 1 2020

P/s: Bài này thì không có chắc tại cũng mới học qua

\(a)\) Hàm số trên nghịch biến

\(\Leftrightarrow3m-1< 0\)

\(\Leftrightarrow3m< 1\)

\(\Leftrightarrow m< \frac{1}{3}\)

Vậy \(m< \frac{1}{3}\)thì hàm số trên nghịch biến

\(b)\) Hàm số \(y=\left(3m-1\right)x+m-2\)có dạng \(y=ax\)

\(\Leftrightarrow m-2=0\)

\(\Leftrightarrow m=2\)

\(c)\) VÌ \(n\left(-1;1\right)\in\left(d\right)\Rightarrow\)Thay \(x=-1;y=1\)vào đths

Ta có: \(\left(3m-1\right)\left(-1\right)+m-2=1\)

\(\Leftrightarrow-3m+1+m-2=1\)

\(\Leftrightarrow-2m-1=1\)

\(\Leftrightarrow m=-1\)

Vậy \(m=-1\)

\(d)\) Vì \(\left(d\right)\)cắt đường thẳng \(y=2x-1\)tại điểm có hoành độ \(=1\)

\(\Rightarrow\) Thay \(x=1\)vào hàm số \(y=2x-1\)

Ta có: \(y=2.1-1\)

\(\Leftrightarrow y=2-1=1\)

\(\Leftrightarrow\left(1;1\right)\in\left(d\right)\)

Thay \(x=1;y=1\)vào hàm số \(y=\left(3m-1\right)x+m-2\)

Ta có: \(\left(3m-1\right)1+m-2=1\)

\(\Leftrightarrow3m-1+m-2=1\)

\(\Leftrightarrow4m-3=1\)

\(\Leftrightarrow m=1\)

Vậy \(m=1\)

\(e)\) \(\left(d\right)//\)đường thẳng \(y=5x+1\)

\(\Leftrightarrow\hept{\begin{cases}3m-1=5\\m-2\ne1\end{cases}\Leftrightarrow\hept{\begin{cases}3m=6\\m\ne3\end{cases}\Leftrightarrow}\hept{\begin{cases}m=2\\m\ne3\end{cases}}}\Leftrightarrow m=2\)

Vậy \(m=2\)

\(f)\) \(\left(d\right)\)cắt đường thẳng \(y=2x-2020\)

\(\Leftrightarrow3m-1\ne-2\)

\(\Leftrightarrow3m\ne3\)

\(\Leftrightarrow m\ne1\)

Vậy \(m\ne1\)

\(g)\) \(\left(d\right)\perp\)đường thẳng \(y=\frac{1}{4}x-2019\)

\(\Leftrightarrow\left(3m-1\right).\frac{1}{4}=-1\)

\(\Leftrightarrow\frac{3}{4}m-\frac{1}{4}=-1\)

\(\Leftrightarrow\frac{3}{4}m=-\frac{3}{4}\)

\(\Leftrightarrow m=-1\)

Vậy \(m=-1\)

\(h)\) \(\left(d\right)\)cắt đường thẳng \(y=8x-5\)tại một điểm thuộc trục tung

\(\Leftrightarrow\hept{\begin{cases}3m-1\ne8\\m-2=-5\end{cases}\Leftrightarrow\hept{\begin{cases}3m\ne9\\m=-5+2\end{cases}\Leftrightarrow}\hept{\begin{cases}m\ne3\\m=3\end{cases}}\left(ktm\right)}\)

Vậy không tìm được giá trị \(x\)nào TMĐK

AH
Akai Haruma
Giáo viên
17 tháng 3 2021

Lời giải:

PT $\Leftrightarrow xy-y+x+y=5$

$\Leftrightarrow xy+x=5$

$\Leftrightarrow x(y+1)=5$

Do $x,y$ nguyên nên đến đây xét các TH sau: 

$(x,y+1)=(1,5)\Rightarrow (x,y)=(1,4)$

$(x,y+1)=(5,1)\Rightarrow (x,y)=(5,0)$

$(x,y+1)=(-1,-5)\Rightarrow (x,y)=(-1,-6)$

$(x,y+1)=(-5,-1)\Rightarrow (x,y)=(-5,-2)$

 

17 tháng 3 2021

https://hoc24.vn/cau-hoi/cau-1-mot-doi-tho-mo-khai-thac-than-theo-ke-hoach-moi-ngay-phai-khai-thac-duoc-55-tan-than-khi-thuc-hien-moi-ngay-doi-khai-thac-duoc-60-tan-than-do-do-doi-da-hoan-thanh-ke-hoach-truoc-2-ngay-ma-c.474068258584

Cô làm hộ cháu với !

11 tháng 6 2016

T làm bài 1 thôi nhé

11 tháng 6 2016

Hỏi đáp Toán

28 tháng 1 2021

a, \(\sqrt{2x^2-2x+m}=x+1\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x^2-2x+m=x^2+2x+1\\x+1\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2-4x+m-1=0\left(1\right)\\x\ge-1\end{matrix}\right.\)

Yêu cầu bài toán thỏa mãn khi phương trình \(\left(1\right)\) có nghiệm \(x\ge-1\) chỉ có thể xảy ra các trường hợp sau

TH1: \(x_1\ge x_2\ge-1\)

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'\ge0\\\dfrac{x_1+x_2}{2}\ge-1\\1.f\left(-1\right)\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}5-m\ge0\\2\ge-1\\m+4\ge0\end{matrix}\right.\)

\(\Leftrightarrow-4\le m\le5\)

TH2: \(x_1\ge-1>x_2\)

\(\Leftrightarrow\left\{{}\begin{matrix}5-m\ge0\\m+4< 0\end{matrix}\right.\)

\(\Rightarrow\) vô nghiệm

Vậy \(-4\le m\le5\)