K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Δ=(2m+2)^2-4(m-6)

=4m^2+8m+4-4m+24

=4m^2+4m+28

=(2m+1)^2+27>0

=>Phương trình luôn có hai nghiệm phân biệt

c: Để (1) có ít nhất 1 nghiệm dương thì

m-6<0 hoặc (2m+2>0 và m-6>0)

=>m>6 hoặc m<6

31 tháng 5 2021

\(x^{2^{ }}+2\left(m-1\right)x-6m-7=0\left(1\right)\)

a) \(Dental=\left[2\left(m-1\right)\right]^2-4\cdot1\cdot\left(-6m-7\right)\)

         \(< =>4\cdot\left(m^2-2m+1\right)+24m+28\)

         \(< =>4m^2-8m+4+24m+28\)   

          \(< =>4m^2+16m+32\)

          \(< =>\left(2m+4\right)^2+16>0\)     với mọi m

Vậy phương (1) luôn có 2 nghiệm phân biệt với mọi m

b) Theo định lí vi ét ta có:

x1+x2\(\dfrac{-2\left(m-1\right)}{1}=-2m+1\)

x1x2\(-6m-7\)

 

            

22 tháng 4 2023

quy đồng

khử mẫu

tách sao cho có tích và tổng

thay x1x2 x1+x2

kết luận

mặt xấu vl . . .oe

4 tháng 7 2021

\(\Delta=m^2-4\left(m-4\right)=\left(m^2-4m+4\right)+12=\left(m-2\right)^2+12>0;\forall m\)

Suy ra pt luôn có hai nghiệm pb với mọi m

Theo viet có:\(\left\{{}\begin{matrix}x_1+x_2=m\\x_1.x_2=m-4\end{matrix}\right.\)

\(\left(5x_1-1\right)\left(5x_2-1\right)< 0\)

\(\Leftrightarrow25x_1x_2-5\left(x_1+x_2\right)+1< 0\)

\(\Leftrightarrow25\left(m-4\right)-5m+1< 0\)

\(\Leftrightarrow m< \dfrac{99}{20}\)

Vậy...

4 tháng 7 2021

\(\Delta=m^2-4m+16=\left(m-2\right)^2+12>0\)

\(\Rightarrow\) pt luôn có 2 nghiệm phân biệt

Áp dụng hệ thức Vi-ét: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-4\end{matrix}\right.\)

Ta có: \(\left(5x_1-1\right)\left(5x_2-1\right)=25x_1x_2-5\left(x_1+x_2\right)+1\)

\(=25\left(m-4\right)-5m+1=20m-99\)

\(\Rightarrow20m-99< 0\Rightarrow m< \dfrac{99}{20}\)

17 tháng 2 2016

b/ Ta có: x1 + x2 = 2m + 2

x1x2 = m - 4

M = x1(1 - x2) + x2(1 - x1) = x1 - x1x2 + x2 - x1x2 = (x1 + x2) - 2x1x2 = (2m + 2) - 2.(m - 4) = 10

Vậy không phụ thuộc vào m

17 tháng 2 2016

mong các bạn sớm giải giúp mình

a: \(\text{Δ }=\left(-2m\right)^2-4\left(2m-5\right)=4m^2-8m+20\)

\(=4m^2-8m+4+16=\left(2m-2\right)^2+16>0\)

=>(1) luôn có hai nghiệm phân biệt

b: (x1-x2)^2=32

=>(x1+x2)^2-4x1x2=32

=>\(\left(2m\right)^2-4\left(2m-5\right)=32\)

=>4m^2-8m+20-32=0

=>4m^2-8m-12=0

=>m^2-2m-3=0

=>m=3 hoặc m=-1

NV
22 tháng 2 2021

\(\Delta=\left(m+4\right)^2-4\left(3m+3\right)=m^2-4m+4=\left(m-2\right)^2\ge0\) ; \(\forall m\)

\(\Rightarrow\) Phương trình đã cho luôn có nghiệm với mọi m

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m+4\\x_1x_2=3m+3\end{matrix}\right.\)

\(x_1^2-x_1=x_2-x_2^2+8\)

\(\Leftrightarrow x_1^2+x_2^2-\left(x_1+x_2\right)-8=0\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)-8=0\)

\(\Leftrightarrow\left(m+4\right)^2-2\left(3m+3\right)-\left(m+4\right)-8=0\)

\(\Leftrightarrow m^2+m-2=0\Rightarrow\left[{}\begin{matrix}m=1\\m=-2\end{matrix}\right.\)

16 tháng 5 2021

`a)ac=-3<0`
`=>b^2-4ac>0`
`=>` phương trình luôn có hai nghiệm phân biệt với mọi m
`b)` áp dụng vi-ét:`x_1+x_2=m,x_1.x_2=-3`
`(x_1+6).(x_2+6) = 2019`
`<=>x_1.x_2+6(x_1+x_2)+36=2019`
`<=>6m-3+36=2019`
`<=>6m+33=2019`
`<=>6m=1986`
`<=>m=331`
Vậy `m=331` thì `(x_1+6).(x_2+6) = 2019`