α+β=90o ,tanβ=5/3
tinh ti so luong giac α
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn C sai
- Vì đẳng thức đúng phải là: cos β = sin(90o - β)
Để giải bài toán này, ta sẽ sử dụng các công thức và quy tắc trong lượng giác để tính toán.
Trước hết, ta có: sin(α+β) = sinα.cosβ + cosα.sinβ cos(α+β) = cosα.cosβ - sinα.sinβ
Đề bài cho α+β = 1313 và tanα = -2tanβ. Ta có thể suy ra các thông tin sau: tanα = -2tanβ => sinα/cosα = -2sinβ/cosβ => sinα.cosβ = -2sinβ.cosα
Bài toán yêu cầu tính A = sin(α+3π/8) . cos(α+π/8) + sin(β-5π/12) . sin(β-π/12)
Để tính A, ta sẽ thay các giá trị đã biết vào công thức trên:
A = sin(α+3π/8) . cos(α+π/8) + sin(β-5π/12) . sin(β-π/12) = (sinα . cos(3π/8) + cosα . sin(3π/8)) . (cosα . cos(π/8) - sinα . sin(π/8)) + (sinβ . cos(5π/12) - cosβ . sin(5π/12)) . (cosβ . cos(π/12) + sinβ . sin(π/12)) = (sinα . cos(3π/8) + cosα . sin(3π/8)) . (cosα . cos(π/8) - sinα . sin(π/8)) + (sinβ . cos(5π/12) - cosβ . sin(5π/12)) . (cosβ . cos(π/12) + sinβ . sin(π/12)) = (sinα . cos(3π/8) + cosα . sin(3π/8)) . (cosα . cos(π/8) - sinα . sin(π/8)) + (sinβ . cos(5π/12) - cosβ . sin(5π/12)) . (cosβ . cos(π/12) + sinβ . sin(π/12)) = (sinα . cos(3π/8) + cosα . sin(3π/8)) . (cosα . cos(π/8) - sinα . sin(π/8)) + (sinβ . cos(5π/12) - cosβ . sin(5π/12)) . (cosβ . cos(π/12) + sinβ . sin(π/12))
Tuy nhiên, để tính giá trị chính xác của A, cần biết thêm giá trị cụ thể của α và β. Trong câu hỏi của bạn, không có thông tin về α và β, do đó không thể tính toán giá trị của A.
Bài 3:
a: cos B=0,8 nên AC/BC=4/5
=>AC=8cm
=>AB=6cm
b: sin C=cos B=4/5
cos C=3/5
tan C=4/3
cot C=3/4
a) Đúng.
(α) ⊥ (β) ⇒ ∃ đường thẳng d ⊂ (β) và d ⊥ (α ).
Mà (α ) // (γ)
⇒ d ⊥ (γ)
⇒ (β) ⊥ (γ).
b) Sai, vì hai mặt phẳng (β), (γ) cùng vuông góc với mp(α) có thể song song hoặc cắt nhau.
\(a+b=90\Rightarrow a=90-b\Rightarrow tana=tan\left(90-b\right)=cotb=\dfrac{1}{tanb}=\dfrac{3}{5}\)
\(\dfrac{sina}{cosa}=tana=\dfrac{3}{5}\Rightarrow sina=\dfrac{3cosa}{5}\)
Mà \(sin^2a+cos^2a=1\Rightarrow\dfrac{9}{25}cos^2a+cos^2a=1\Rightarrow\dfrac{34}{25}cos^2a=1\)
\(\Rightarrow cos^2a=\dfrac{25}{34}\Rightarrow cosa=\dfrac{5}{\sqrt{34}}\) (do a<90 nên cosa>0)
\(\Rightarrow sina=\dfrac{3}{5}cosa=\dfrac{3}{5}\dfrac{5}{\sqrt{34}}=\dfrac{3}{\sqrt{34}}\)
Vậy \(sina=\dfrac{3}{\sqrt{34}};cosa=\dfrac{5}{\sqrt{34}};tana=\dfrac{3}{5};cota=\dfrac{5}{3}\)