K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 6 2017

\(A=\sqrt[3]{7+5\sqrt{2}}+\sqrt[3]{7-5\sqrt{2}}\)

\(\Rightarrow A^3=14+3\sqrt[3]{\left(7+5\sqrt{2}\right)\left(7-5\sqrt{2}\right)}\left(\sqrt[3]{7+5\sqrt{2}}+\sqrt[3]{7-5\sqrt{2}}\right)\)

<=>A3=14-3A

<=>A3+3A-14=0

<=>A3-4A+7A-14=0

<=>A.(A-2)(A+2)+7.(A-2)=0

<=>(A-2)(A2+9A-14)=0

<=>A=2(nhận)

Vậy A=2

14 tháng 6 2017

mình ko hiểu lắm bạn ạk

NV
15 tháng 10 2019

\(A^3=x^3-3x+3A\sqrt[3]{\frac{\left(x^3-3x\right)^2-\left(x^2-1\right)^2\left(x^2-4\right)}{4}}\)

\(A^3=x^3-3x+3A\sqrt[3]{\frac{x^6-6x^4+9x^2-\left(x^6-6x^4+9x^2-4\right)}{4}}\)

\(A^3=x^3-3x+3A\)

\(A^3-x^3-3\left(A-x\right)=0\)

\(\left(A-x\right)\left(A^2+x^2+Ax-3\right)=0\)

\(\Rightarrow A=x\) (do \(\left\{{}\begin{matrix}A>0\\x\ge2\end{matrix}\right.\) \(\Rightarrow x^2-3>0\Rightarrow A^2+x^2+Ax-3>0\))

2/ \(a+1=\sqrt{17}\Rightarrow a^2+2a+1=17\Rightarrow a^2+2a-17=-1\)

\(P=\left[a^3\left(a^2+2a-17\right)-a^2+18a-17\right]^{2018}\)

\(=\left(-a^3-a^2+18a-17\right)^{2018}\)

\(=\left(-a\left(a^2+2a-17\right)+a^2+a-17\right)^{2018}\)

\(=\left(a^2+2a-17\right)^{2018}\)

\(=\left(-1\right)^{2018}=1\)

2 tháng 2 2019

(18a-5b).(27a+b) chia hết cho 17

Mà 17 là số nguyên tố nên trong 2 số 18a-5b và 27a+b có ít nhất 1 số chia hết cho 17

Xét hiệu: 5.(27a+b)+(18a-5b)

= 135a+5b+18a-5b

= 153a chia hết cho 17 (*)

+ Nếu 27a+b chia hết cho 17 từ (*) dễ dàng => 18a-5b chia hết cho 17

=> (27a+b)(18a-5b) chia hết cho 17.17 = 289

+ Nếu 18a-5b chia hết cho 17, từ (*) => 5.(27a+b) chia hết cho 17

Mà (5;17)=1 nên 27a+b chia hết cho 17

Do đó, (18a-5b)(27a+b) chia hết cho 17.17 = 289

Vậy ta có đpcm

Học tốt