cho x>0 tim Max \(A=\dfrac{1200x\left(12+x\right)}{\left(48+16x\right)^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì 3 ≤ x ≤ 7 => x - 3 ≥ 0; 7 - x ≥ 0
=> C ≥ 0
Dấu = xảy ra khi và chỉ khi x = 3 hoặc x = 7
C = (x - 3)(7 - x) ≤ \(\dfrac{1}{4}\)(x - 3 + 7 - x)2 = \(\dfrac{1}{4}\).42 = 4
Dấu "=" xảy ra <=> x - 3 = 7 - x <=> x = 5
\(G=\left(x^2+\sqrt[3]{3}\right)+\left(\dfrac{2}{x^3}+\dfrac{2}{\sqrt{3}}+\dfrac{2}{\sqrt{3}}\right)-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}\ge2\sqrt{x^2.\sqrt[3]{3}}+3\sqrt[3]{\dfrac{2}{x^3}.\dfrac{2}{\sqrt{3}}.\dfrac{2}{\sqrt{3}}}-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}=2\sqrt[6]{3}.x+\dfrac{6}{\sqrt[3]{3}x}-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}\ge2\sqrt{2\sqrt[6]{3}.x.\dfrac{6}{\sqrt[3]{3}x}}-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}=2\sqrt{\dfrac{12\sqrt[6]{3}}{\sqrt[3]{3}}}-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}\)
Dấu "=" xảy ra khi và chỉ khi \(x=\sqrt[6]{3}\)
Sau vài phút cố gắng thì khẳng định đề bài của em bị sai
Đề này còn có lý, lần sau chú ý đọc kĩ đề trước khi đăng lên, tránh làm mất thời gian vô ích:
\(\left|x-2y\right|\le\dfrac{1}{\sqrt{x}}\Rightarrow1\ge\sqrt{x}\left|x-2y\right|\Rightarrow1\ge x\left(x-2y\right)^2\)
\(\Rightarrow1\ge x^3-4x^2y+4xy^2\)
Tương tự: \(\dfrac{1}{\sqrt{y}}\ge\left|y-2x\right|\Rightarrow1\ge y^3-4xy^2+4xy^2\)
Cộng vế:
\(\Rightarrow2\ge x^3+y^3=\dfrac{1}{2}\left(x^3+x^3+1\right)+\left(y^3+1+1\right)-\dfrac{5}{2}\ge\dfrac{1}{2}.3x^2+3y-\dfrac{3}{2}=\dfrac{3}{2}\left(x^2+2y\right)-\dfrac{5}{2}\)
\(\Rightarrow\dfrac{3}{2}\left(x^2+2y\right)\le\dfrac{9}{2}\Rightarrow x^2+2y\le3\)
(1) \(\Leftrightarrow\left(x+1\right)\left(\sqrt{16x+17}-x+\dfrac{23}{8}\right)=0\)
cái này đâu ra z ???
nguyen van tuan: hì, xin lỗi, làm hơi tắt ^^!
\(\left(1\right)\Leftrightarrow\left(x+1\right)\sqrt{16x+17}=\left(x+1\right)\left(x-\dfrac{23}{8}\right)\Leftrightarrow\left(x+1\right)\sqrt{16x+17}-\left(x+1\right)\left(x-\dfrac{23}{8}\right)=0\Leftrightarrow\left(x+1\right)\left(\sqrt{16x+17}-x+\dfrac{23}{8}\right)=0\)
\(\left(1+\dfrac{1}{x}\right)\left(1+\dfrac{1}{y}\right)\left(1+\dfrac{1}{z}\right)=8\)
=>\(8xyz=xyz+\sum x+\sum xy+1\)
=>\(\sum x^2+14xyz=\left(\sum x\right)^2+2\sum x+2\)
mặt khác
\(8=\left(1+\dfrac{1}{x}\right)\left(1+\dfrac{1}{y}\right)\left(1+\dfrac{1}{z}\right)\ge\dfrac{8}{\sqrt[3]{xyz}}\rightarrow xyz\ge1\)
đặt \(\sum x=a\left(a\ge3\right)\)
khi đó \(P=\dfrac{a^2+2a+2}{4a^2+15xyz}\le\dfrac{a^2+2a+2}{4a^2+15}\)
\(\dfrac{a^2+2a+2}{4a^2+15}=\dfrac{1}{3}-\dfrac{\left(a-3\right)^2}{12a^2+45}\le\dfrac{1}{3}\)
vậy max bằng 1/3 khi x=y=z=1
a: \(=\dfrac{1}{x-y}\cdot x^2\cdot\left(x-y\right)=x^2\)
b: \(=\sqrt{27\cdot48}\cdot\left|a-2\right|=36\left(a-2\right)\)
c: \(=\left(\sqrt{2012}+\sqrt{2011}\right)^2\)
d: \(=\dfrac{8}{7}\cdot\dfrac{-x}{y+1}\)
e: \(=\dfrac{11}{12}\cdot\dfrac{x}{-y-2}=\dfrac{-11x}{12\left(y+2\right)}\)
\(E=\dfrac{4\left|x\right|+9}{\left|x\right|+1}\)
\(\left\{{}\begin{matrix} \left|x\right|\ge0\Rightarrow4\left|x\right|\ge0\Rightarrow4\left|x\right|+9\ge9\\\left|x\right|\ge0\Rightarrow x+1\ge1\end{matrix}\right.\)
\(MAX_E\Rightarrow MIN_{\left|x\right|+1}\)
\(MIN_{\left|x\right|+1}=1\)
\(\Rightarrow\left|x\right|=0\Rightarrow x=0\)
\(\Rightarrow MAX_E=\dfrac{4.\left|0\right|+9}{\left|0\right|+1}=\dfrac{9}{1}=9\)
\(F=\dfrac{2\left|x\right|+8}{3\left|x\right|+1}\)
\(\left\{{}\begin{matrix}\left|x\right|\ge0\Rightarrow2\left|x\right|\ge0\Rightarrow2\left|x\right|+8\ge8\\\left|x\right|\ge0\Rightarrow3\left|x\right|\ge0\Rightarrow3\left|x\right|+1\ge1\end{matrix}\right.\)
\(MAX_F\Rightarrow MIN_{3\left|x\right|+1}\)
\(MIN_{3\left|x\right|+1}=1\)
\(\Rightarrow\left|x\right|=0\Rightarrow x=0\)
\(\Rightarrow MAX_F=\dfrac{2.\left|0\right|+8}{3.\left|0\right|+1}=\dfrac{8}{1}=8\)
\(\)
\(A=\dfrac{75x\left(12+x\right)}{\left(12+4x\right)^2}\);\(A>0\forall x>0\)
Gọi \(A_0\in MGT\) của A
\(\Rightarrow A_0=\dfrac{75x\left(12+x\right)}{\left(12+4x\right)^2}\) có nghiệm
\(\Rightarrow A_0\left(12+4x\right)^2=75x\left(12+x\right)\)
\(\Leftrightarrow x^2\left(16A_0-75\right)+x\left(96A_0-900\right)+144A_0=0\) có nghiệm
\(\Leftrightarrow\Delta\ge0\Leftrightarrow-4A_0+25\ge0\)\(\Leftrightarrow A_0\le\dfrac{25}{4}\)
\(\Rightarrow maxA=\dfrac{25}{4}\)