K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 11 2015

UCLN(a;b) =a.b/BCNN(a;b) = 2940/210 =14

a=14p;b= 14q  với (p;q) =1 => 14p.14q =2940 => pq=15

+ p=1 ;q=15 => a=14;b=210

+ p=3; q=5 => a= 42;b=70

Vậy 2 số là 14;210  hoặc 42;70

12 tháng 12 2015

Với công thức ab = ƯCLN﴾a; b﴿.BCNN﴾a; b﴿

nên suy ra ƯCLN﴾a; b﴿ = 2940 : 210 = 14

Vậy a = 14m ; b = 14 n ﴾m ≥ n﴿

Thay vào a.b = 2940 được:

14m.14n = 2940

=> m.n = 2940 : ﴾14.14﴿ = 15

Vì m ≥ n nên 15 = 5.3 = 15.1

‐Với m = 5 ; n = 3 thì a = 70 ; b = 42

‐Với m = 15 ; n = 1 thì a = 210 ; b =1 

12 tháng 12 2015

UCLN của 2 số là:2940:210=14

Ta có:a=14.m

         b=14.n

Ta có:a .b=2940

hay 14.m.14.n=2940

      196(m.n)=2940

           m.n=2940:196

           m.n=15

m           1             3

n           15           5

=>a              14            42

    b               210         70

Vậy ta có các cặp số (a;b)hoặc(b;a)={(14:210);(42;70)}

Tick nha bạn!

 

5 tháng 9 2023

Ta có : a . b = ƯCLN ( a ; b ) . BCNN ( a ; b ) 

Mà a . b = 2940 và BCNN ( a ; b ) = 210

⇒⇒ ƯCLN ( a ; b ) = 2940 : 210 = 14

⇒⇒ a = 14m ; b = 14n ( m ; n > 0 ) 

Thay a = 14m ; b = 14n vào a . b = 2940, ta được :

        14m . 14n = 2940

        196 . m . n = 2940

                m . n  = 15

⇒⇒ m ; n ∈ Ư ( 15 ) = { 1 ; 3 ; 5 ; 15 }

+, Với m = 1 ; n = 15 ⇒⇒ a = 14 ; b = 210

+, Với m = 3 ; n = 5 ⇒⇒ a = 42 ; b = 70

+, Với m = 5 ; n = 3 ⇒⇒ a = 70 ; b = 42

+, Với m = 15 ; n = 1 ⇒⇒ a = 210 ; b = 14 

 Vậy ( a ; b ) ∈ { ( 14 ; 210 ) ; ( 42 ; 70 ) ; ( 70 ; 42 ) ; ( 210 ; 14 ) } 

ab = UCLN ( a,b); BCNN ( a,b )

=> UCLN (a,b) = 2940 : 210 = 14

Vậy a = 14m và b = 14n ( m > hoặc = n )

Thay a.b = 2940 ta có: 

14m . 14n = 2940 

=> m.n = 2940 : ( 14 x 14 ) = 15 

Vì m > hoặc = n nên 15 = 5.3 = 15.1

Với m = 5; n = 3 => a = 70 ; b = 42

Với m = 15; n = 1 => a = 210; b = 1

 

29 tháng 11 2015

 Gọi số cần tìm là a và b ( giả sử a>b)  

Ta có : a*b = 2940  

Mà BCNN của chúng là 210  

=> a chia hết cho b ( nếu a không chia hết cho b thì BCNN của chúng sẽ là :

a*b , mà a*b = 2940 nên a chỉ có thể chia hết cho b)

Vay a là 210 và b là 14

19 tháng 10 2015

Với công thức ab = ƯCLN(a; b).BCNN(a; b)

nên suy ra ƯCLN(a; b) = 2940 : 210 = 14

Vậy a = 14m ; b = 14 n                  (m ≥ n)

Thay vào a.b = 2940 được:

               14m.14n = 2940

            => m.n = 2940 : (14.14) = 15

Vì m ≥ n nên 15 = 5.3 = 15.1

-Với m = 5 ; n = 3 thì a = 70 ; b = 42

-Với m = 15 ; n = 1 thì a = 210 ; b =1

3 tháng 1 2017

dung roi

Ta có : \(\overline{ab}=UCLN\left(a,b\right),BCNN\left(a,b\right)\)

\(\Rightarrow UCLN\left(a,b\right)=ab:BCNN\left(a,b\right)\)

\(\Rightarrow UCLN\left(a,b\right)=2940:210=14\)

Ta có : \(a.b=2940\)

Thay số vào, ta có : \(a.b=14.a'.14.b'=\left(14;14\right).a'.b'=2940\)

Ta có : 

a'13515
b'15531

\(\Rightarrow\)

a144270210
b210704214

Vậy các số a, b cần tìm là : 14 và 210; 42 và 70; 70 và 42; 210 và 14


 

16 tháng 11 2016

1 / 

Với công thức ab = ƯCLN(a; b).BCNN(a; b)

nên suy ra ƯCLN(a; b) = 2940 : 210 = 14

Vậy a = 14m ; b = 14 n                  (\(m\ge n\))

Thay vào a.b = 2940 được:

               14m.14n = 2940

            => m.n = 2940 : (14.14) = 15

Vì \(m\ge n\) nên 15 = 5.3 = 15.1

-Với m = 5 ; n = 3 thì a = 70 ; b = 42

-Với m = 15 ; n = 1 thì a = 210 ; b =1

2 / 

Gọi 5 số tự nhiên liên tiếp là a; a + 1; a + 2; a + 3; a + 4 

=> Tích của chúng là a(a+1)(a+2)(a+3)(a+4)

Trong tích của 5 số tự nhiên liên tiếp có ít nhất tích 2 số chẵn liên tiếp. Mà tích 2 số chẵn liên tiếp chia hết cho 8 nên => a(a+1)(a+2)(a+3)(a+4) chia hết cho 8 (1)

Tích của 5 số tự nhiên liên tiếp thì luôn chia hết cho 5 (vì trong tích có ít nhất 1 số chia hết cho 5) => a(a+1)(a+2)(a+3)(a+4) chia hết cho 5 (2)

Trong tích của 5 số tự nhiên liên tiếp có tích của 3 STN liên tiếp. Tích của 3 STN liên tiếp thì chia hết cho 3 => a(a+1)(a+2)(a+3)(a+4) chia hết cho 3 (3)

Từ (1), (2), (3) và 8,3,5 là các số đôi một nguyên tố cùng nhau nền => a(a+1)(a+2)(a+3)(a+4) chia hết cho 8.5.3 = 120

Vậy tích 5 STN liên tiếp luôn chia hết cho 120.