Cho tâm giác ABC có C = 70 độ, góc ngoài tại đỉnh A bằng 120 độ. Tính góc ngoài tại đỉnh B
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc BAC=180-120=60 độ
góc ABE=70/2=35 độ
góc AEB=180-60-35=85 độ
b: góc ABE<góc BAE<góc AEB
=>AE<BE<AB
c: góc ECB=180-70-60=50 độ
góc BEC=180-85=95 độ
Vì góc EBC<góc ECB<góc BEC
nên EC<EB<BC
a) Có: góc ACB + góc ACx = 180 độ (kề bù)
=> góc ACB = 70 độ
Mà góc BAC + góc ABC + góc ACB = 180 độ (định lý tổng 3 góc tam giác)
=> Góc ABC = 60 độ
b) Có: góc CAy + góc BAC = 180 độ ( kề bù)
=> góc CAy = 130 độ
góc ABC + góc ABz = 180 độ (kề bù)
=> góc ABz = 120 độ
Ta có: \(\widehat{C1}+\widehat{C2}=180^o\)(kề bù)
\(\widehat{C1}+110^o=180^o\)
\(\widehat{C1}=180^o-110^o=70^o\)
\(\Rightarrow\widehat{C1}=70^o\)
Xét tam giác ABC, ta có:
\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
\(50^o+\widehat{B}+70^o=180^o\)
\(\widehat{B}=180^o-\left(50^o+70^o\right)=60^o\)
\(\Rightarrow\widehat{B}=60^o\)
Vì \(\widehat{B1}\)là số đo góc ngoài tại đỉnh A của tam giác ABC
=> \(\widehat{B1}=\widehat{A}+\widehat{C}=50^o+70^o=120^o\)
Vì \(\widehat{A1}\)là số đo góc ngoài tại đỉnh A của tam giác ABC
\(\Rightarrow\widehat{A1}=\widehat{B}+\widehat{C}=70^o+60^o=130^o\)
a) theo tính chất tong tam giác có : A+B+C=180
=> C=180-B-A=180-70-60=50 độ
b) ta có CI là phân giác ngoài góc C => ACI=\(\frac{1}{2}\left(180-C\right)=\frac{1}{2}\left(180-50\right)=65\)độ
BI là phân giác trong goác B
=> CBI =\(\frac{1}{2}B=\frac{1}{2}.60=30\) độ
theo tổng các góc trong tam giác BIC ta có
\(BIC+ICB+CBI=180\)
=> BIC=180-IBC-ICB=180-30-65=85 dộ
+) Góc xAC = góc ABC + ACB (tính chất góc ngoài tam giác)
góc A2 = xAC / 2
=> góc A2 = (góc ABC + C1) / 2 = B1 + ( C1 / 2 ) (Vì góc B1 = ABC /2 )
+) Trong tam giác AIB: góc AIB = 180o - (B1 + A1 + A2)
= 180o - (B1 + A1 +B1 + ( C1 / 2 ) )
= 180o - (2.B1 + A1 + ( C1 / 2 ) )
= 180o - (B + A1 + ( C1 / 2 ))
Mà B + A1 = 180o - C1 = 180o - 70o = 110o; C1 / 2 = 70o/ 2 = 35o
=> góc AIB = 180o - (110o + 35o) = 180o - 145o = 35o
+) Góc xAC = góc ABC + ACB (tính chất góc ngoài tam giác)
góc A2 = xAC / 2
=> góc A2 = (góc ABC + C1) / 2 = B1 + ( C1 / 2 ) (Vì góc B1 = ABC /2 )
+) Trong tam giác AIB: góc AIB = 180o - (B1 + A1 + A2)
= 180o - (B1 + A1 +B1 + ( C1 / 2 ) )
= 180o - (2.B1 + A1 + ( C1 / 2 ) )
= 180o - (B + A1 + ( C1 / 2 ))
Mà B + A1 = 180o - C1 = 180o - 70o = 110o; C1 / 2 = 70o/ 2 = 35o
=> góc AIB = 180o - (110o + 35o) = 180o - 145o = 35o
\(a,\widehat{C}=180^0-\widehat{A}-\widehat{B}=75^0\\ b,=180^0-\widehat{C}=105^0\\ c,\text{Đề trùng câu b}\)
a) Xét tam giác ABC có:
\(\widehat{BAC}\) \(\text{+}\) \(\widehat{ABC}\) \(\text{+}\) \(\widehat{ACB}\) \(=180^o\) (Tổng 3 góc trong tam giác).
Thay số: \(60^o+45^o+\) \(\widehat{ACB}\) \(=180^o\).
\(\Rightarrow\) \(\widehat{ACB}\) \(=75^o.\)
b) Số đo góc ngoài đỉnh C là:
\(180^o-\) \(\widehat{ACB}\) = \(180^o-\) \(75^o=105^o.\)
Ta có:
ICK=ICB+KCB
=1/2ACB+1/2BCx
=1/2 180=90
Hoàn toàn tương tự thì:IBK=90
Xét tứ giác BICK có:
CIB+IBC+ICB+CKB=360
=>CIB=360-(IBC+ICB+CKB)=360-235=125
Vậy các góc của tứ giác BICK là CIB=125, CKB=55
IBK=ICK=90
hình bạn tự vẽ nha !chúc bạn học tốt
Xét tam giác ABC
Ta có:\(\widehat{BAC}+\widehat{A}=180^0\) (kề bù)
<=>\(\widehat{BAC}+120^0=180^0\Rightarrow\widehat{BAC}=60^0\)
Ta có:\(\widehat{C}+\widehat{ABC}+\widehat{BAC}=180^0\)
\(\Leftrightarrow70^0+\widehat{ABC}+60^0=180^0\Rightarrow\widehat{ABC}=50^0\)
\(\Leftrightarrow\widehat{ABC}+\widehat{B}=180^0\) (KỀ BÙ)
\(\Leftrightarrow50^0+\widehat{B}=180^0\Rightarrow\widehat{B}=130^0\)