Cho hàm số \(y=\left(m^2-4\right).x^2-\left(2m+n\right).\left(5m-n\right).x-3\)Với giá trị nào của m và n hàm số trên là hàm số bậc nhất nghịch biến
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
20 tháng 11 2021
Ta thấy rõ \(\left(m^2-9\right)x^2\)là hạng tử bậc hai, nên để hàm số đã cho là hsbn thì \(m^2-9=0\Leftrightarrow\left(m-3\right)\left(m+3\right)=0\Leftrightarrow\orbr{\begin{cases}m=3\\m=-3\end{cases}}\)
25 tháng 12 2021
Vì hai đồ thị cắt nhau tại một điểm trên trục tung nên n=-4
=>m=-2
1 tháng 8 2023
-3m^2+7m-6
=-3(m^2-7/3m+2)
=-3(m^2-2*m*7/6+49/36+23/36)
=-3(m-7/6)^2-23/12<=-23/12<0 với mọi m
=>y=(-3m^2+7m-6)x+m luôn là hàm số bậc nhất và luôn nghịch biến trên R
28 tháng 7 2023
2: m^2-m+1
=m^2-m+1/4+3/4
=(m-1/2)^2+3/4>=3/4>0 với mọi m
=>y=(m^2-m+1)x+m luôn là hàm số bậc nhất và luôn đồng biến trên R
16 tháng 10 2020
m=2. Khi đó hàm số trở thành: f(x)= -4x-3
Khi đó hàm f(x) luôn nghịch biến vì hệ số a=-4<0