Cho \(A=\frac{8-x}{x-3}\)
Tính A sao cho \(\frac{a+b}{x}=\frac{a+c}{13}\)và \(\frac{\left(a+c\right)^2}{\left(2a+b+c\right)\left(b-c\right)}=\frac{-169}{27}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1
Ez lắm =)
Bài 1:
Với mọi gt \(x,y\in Q\) ta luôn có:
\(x\le\left|x\right|\) và \(-x\le\left|x\right|\)
\(y\le\left|y\right|\) và \(-y\le\left|y\right|\Rightarrow x+y\le\left|x\right|+\left|y\right|\) và \(-x-y\le\left|x\right|+\left|y\right|\)
Hay: \(x+y\ge-\left(\left|x\right|+\left|y\right|\right)\)
Do đó: \(-\left(\left|x\right|+\left|y\right|\right)\le x+y\le\left|x\right|+\left|y\right|\)
Vậy: \(\left|x+y\right|\le\left|x\right|+\left|y\right|\)
Dấu "=" xảy ra khi: \(xy\ge0\)
Ai biết cách làm thì nhanh tay giải giùm mình nhé!!!!!!!!!!!!
mk đang cần gấp....<3<3<3<3<3<3
\(\frac{a+b}{x}=\frac{a+c}{13}=\frac{b-c}{x-13}=\frac{2a+b+c}{x+13}\)
\(\Rightarrow\hept{\begin{cases}\frac{a+c}{b-c}=\frac{13}{x-13}\\\frac{a+c}{2a+b+c}=\frac{13}{x+13}\end{cases}}\)
\(\Rightarrow\frac{\left(a+c\right)^2}{\left(2a+b+c\right)\left(b-c\right)}=-\frac{169}{27}\)
\(\Leftrightarrow\frac{\left(a+c\right)}{\left(2a+b+c\right)}.\frac{\left(a+c\right)}{\left(b-c\right)}=-\frac{169}{27}\)
\(\Leftrightarrow\frac{13}{x-13}.\frac{13}{x+13}=-\frac{169}{27}\)
\(\Leftrightarrow\left(x-13\right)\left(x+13\right)=-27\)
\(\Leftrightarrow x^2-169=-27\)
\(\Leftrightarrow x^2=142\)
Làm nốt
ĐK: x khác 0, x khác 13, x khác -13
Vì a+c khác 0 => a+b khác 0
\(\frac{a+b}{x}=\frac{a+c}{13}=\frac{2a+c+b}{x+13}=\frac{b-c}{x-13}\)
\(\Rightarrow\frac{\left(a+c\right)^2}{13^2}=\frac{2a+c+b}{x+13}.\frac{b-c}{x-13}\Rightarrow\frac{\left(a+c\right)^2}{\left(2a+c+b\right)\left(b-c\right)}=\frac{13^2}{\left(x+13\right)\left(x-13\right)}=\frac{169}{\left(x+13\right)\left(x-13\right)}\)
Từ đề ra
=> (x+13)(x-13)=-27. Em làm tiếp nhé!