Cho \(\Delta ABC\) có \(\widehat{A}< 90\) độ, đường cao BH và CK. Gọi M là trung điểm của BC, D và E lần lượt là hình chiếu của B và C trên HK.
a, C/minh: \(\Delta MHK\) là tam giác cân
b, C/minh: DK = HE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tam giác \(BKC\)vuông tại \(K\)có \(M\)là trung điểm của cạnh huyền \(BC\)nên \(KM=\frac{1}{2}BC\).
Tương tự ta cũng có \(HM=\frac{1}{2}BC\)
Suy ra \(KM=HM\)
\(\Rightarrow\Delta MKH\)cân tại \(M\).
Kẻ \(MN\)vuông góc với \(DE\).
Suy ra \(MN//BD//CE\)mà \(M\)là trung điểm của \(BC\)nên \(MN\)là đường trung bình của hình thang \(BDEC\).
suy ra \(N\)là trung điểm của \(DE\Rightarrow DN=NE\)(1).
Mà tam giác \(MKH\)cân tại \(M\)nên \(MN\)là đường cao đồng thời cũng là đường trung tuyến suy ra \(KN=HN\)(2)
(1) (2) suy ra \(DN-KN=EN-HN\Leftrightarrow DK=HE\).
Ta có đpcm.
a: Ta có: ΔBKC vuông tại K
mà KM là trung tuyến
nên KM=BC/2
Ta có: ΔBHC vuông tại H
mà HM là trung tuyến
nên HM=BC/2
=>HM=KM
b: KẻMN vuông góc với HK
Vì ΔMHK cân tại M có MN là đường cao
nên N là trung điểm của HK
Xét hình thang BDEC có
M là trung điểm của B
MN//BD//EC
DO đó:N là trung điểm của DE
=>DN=NE
=>DK=HE
a: Ta có: ΔBKC vuông tại K
mà KM là trung tuyến
nên KM=BC/2
Ta có: ΔBHC vuông tại H
mà HM là trung tuyến
nên HM=BC/2
=>HM=KM
b: KẻMN vuông góc với HK
Vì ΔMHK cân tại M có MN là đường cao
nên N là trung điểm của HK
Xét hình thang BDEC có
M là trung điểm của B
MN//BD//EC
DO đó:N là trung điểm của DE
=>DN=NE
=>DK=HE
vẽ hình đê bạn ơi mình éo có rảnh để ngồi vẽ hình hộ bạn đâu
a: Ta có: ΔBKC vuông tại K
mà KM là trung tuyến
nên KM=BC/2
Ta có: ΔBHC vuông tại H
mà HM là trung tuyến
nên HM=BC/2
=>HM=KM
b: KẻMN vuông góc với HK
Vì ΔMHK cân tại M có MN là đường cao
nên N là trung điểm của HK
Xét hình thang BDEC có
M là trung điểm của B
MN//BD//EC
DO đó:N là trung điểm của DE
=>DN=NE
=>DK=HE