I : tìm giá trị nhỏ nhất của biểu thức
a) B=x^2-20x+101
b) D= (x-1)(x+2)(x+3)(x+6)
c) C= x^2-4xy+5y^2+10x-22y+2018
help me
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(C=x^2-4xy+5y^2+10x-22y+28\)
\(C=\left(x^2-4xy+4y^2\right)+\left(10x-20y\right)+25+\left(y^2-2y+1\right)+2\)
\(C=\left(x-2y\right)^2+10\left(x-2y\right)+25+\left(y-1\right)^2+2\)
\(C=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\left(\forall x,y\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x-2y+5\right)^2=0\\\left(y-1\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)
Vậy \(Min_C=2\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)
a)
\(\left|x-1\right|+\left|x-4\right|\ge\left|x-1+4-x\right|=3\)
\(\Rightarrow B\ge3\)
Dấu = khi \(\left(x-1\right)\left(x-4\right)\ge0\)\(\Rightarrow1\le x\le4\)
Vậy MinB=3 khi \(1\le x\le4\)
\(\left|1993-x\right|+\left|1994-x\right|\ge\left|1993-x+x-1994\right|=1\)
\(\Rightarrow C\ge1\)
Dấu = khi \(\left(x-1993\right)\left(x-1994\right)\ge0\)\(\Rightarrow1993\le x\le1994\)
Vậy MinC=1 khi \(1993\le x\le1994\)
\(\Rightarrow x^2+\left|y-2\right|\ge0\)
\(\Rightarrow x^2+\left|y-2\right|-5\ge-5\)
\(\Rightarrow D\ge-5\)
Dấu = khi \(\begin{cases}x=0\\y=2\end{cases}\)
Vậy MinD=-5 khi \(\begin{cases}x=0\\y=2\end{cases}\)
b)Ta thấy:
\(\begin{cases}\left|4x-3\right|\\\left| 5y+7,5\right|\end{cases}\ge0\)
\(\Rightarrow\left|4x-3\right|+\left|5y+7,5\right|\ge0\)
\(\Rightarrow\left|4x-3\right|+\left|5y+7,5\right|+17,5\ge17,5\)
\(\Rightarrow C\ge17,5\)
Dấu = khi \(\begin{cases}x=\frac{3}{4}\\y=-1,5\end{cases}\)
Vậy MinC=17,5 khi \(\begin{cases}x=\frac{3}{4}\\y=-1,5\end{cases}\)
c)Áp dụng Bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(\left|x-2002\right|+\left|x-2001\right|\ge\left|x-2002+2001-x\right|=1\)
\(\Rightarrow M\ge1\)
Dấu = khi \(\left(x-2002\right)\left(x-2001\right)\ge0\)\(\Rightarrow2001\le x\le2002\)
Vậy MinM=1 khi \(2001\le x\le2002\)
\(A=x^2-4xy+5y^2-6y+20=x^2-2.2xy+4y^2+y^2-2.3y+9-9+20=\left(x-2y\right)^2+\left(x-3\right)^2+11\ge11\)
\(\Rightarrow A_{min}=\frac{7}{4}\Leftrightarrow\hept{\begin{cases}x-2y=0\\y-3=0\end{cases}\Rightarrow\hept{\begin{cases}x=2y\\y=3\end{cases}\Rightarrow}\hept{\begin{cases}x=2.3=6\\y=3\end{cases}}}\)
2 bài sau tương tự nếu ko biết nhna81 tin mình mình làm cho
T I C K cho mình nha mình cảm ơn
1,A=(x2-6x+9)+2
=(x-3)2+2
ta thấy (x-3)2>=0 với mọi x
=>(x-3)2+2>=2 với mọi x
hay A>=2
dấu "="xảy ra x-3=0<=>x=3
vậy MinA=2 khi x=3
ý b sai đầu bài bạn nhé
C=-(x2-5x)
=-(x2-5x+25/4)+25/4
=-(x-5/2)2+25/4
ta thấy -(x-5/2)2<=0 với mọi x
=>-(x-5/2)2+25/4 <=25/4 với mọi x
hay C<=25/4
dấu "=" xảy ra khi x-5/2=0<=>x=5/2
vậy MaxC=25/4 khi x=5/2
k mk nha
\(A=x^2+2x+9y^2-6y+2018\)
\(=x^2+2x+1+9y^2-6y+1+2016\)
\(=\left(x+1\right)^2+\left(3y-1\right)^2+2016\ge2016\forall x;y\)
Dấu ''='' xảy ra khi x = -1 ; y = 1/3
Vậy GTNN của A bằng 2016 tại x = -1 ; y = 1/3
Ta có :\(y=\frac{x^2+2}{x^2+x+1}\)
\(\Leftrightarrow yx^2+yx+y=x^2+2\)
\(\Leftrightarrow x^2\left(y-1\right)+yx+y-2=0\)(1)
*Xét y = 1 thì pt trở thành \(x-1=0\)
\(\Leftrightarrow x=1\)
*Xét \(y\ne1\)thì pt (1) là pt bậc 2 ẩn x
Có \(\Delta=y^2-4\left(y-1\right)\left(y-2\right)\)
\(=y^2-4\left(y^2-3y+2\right)\)
\(=y^2-4y^2+12y-8\)
\(=-3y^2+12y-8\)
Pt (1) có nghiệm khi \(\Delta\ge0\)
\(\Leftrightarrow-3y^2+12y-8\ge0\)
\(\Leftrightarrow\frac{6-2\sqrt{3}}{3}\le y\le\frac{6+2\sqrt{3}}{3}\)
a/ \(A=x^2-20x+101\)
\(=x^2-20x+100+1\)
\(=\left(x-10\right)^2+1\)
Với mọi x ta có :
\(\left(x-10\right)^2\ge0\)
\(\Leftrightarrow\left(x-10\right)^2+1\ge1\)
\(\Leftrightarrow A\ge1\)
Dấu bằng xảy ra khi \(x=10\)
Vậy....
b/ \(D=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)
\(=\left[\left(x-1\right)\left(x+6\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]\)
\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
\(=\left(x^2+5x\right)^2-36\)
Với mọi x ta có :
\(\left(x^2+5x\right)^2\ge0\)
\(\Leftrightarrow\left(x^2+5x\right)^2-36\ge-36\)
\(\Leftrightarrow D\ge-36\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x^2+5x\right)^2=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
Vậy..
c/ \(C=x^2-4xy+5y^2+10x-22y+2018\)
\(=\left(x^2-4xy+4y^2\right)+\left(10x-20y\right)+\left(y^2-2y+1\right)+2017\)
\(=\left(x-2y\right)^2+10\left(x-2y\right)+25+\left(y-1\right)^2+1992\)
\(=\left(x-2y+5\right)^2+\left(y-1\right)^2+1992\)
Với mọi x ta có :
\(\left\{{}\begin{matrix}\left(x-2y+5\right)^2\ge0\\\left(y-1\right)^2\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left(x-2y+5\right)^2+\left(y-1\right)^2+1992\ge1992\)
\(\Leftrightarrow C\ge1992\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=1\end{matrix}\right.\)
Vậy..