K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 11 2018

a+b+c=1 => (a+b+c)2=1

=>a2+b2+c2+2(ab+bc+ca)=1

=>1+2(ab+bc+ca)=1

=>ab+bc+ca=0

Đặt \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\Rightarrow x=ak,y=bk,z=ck\)

\(A=xy+yz+zx=akbk+bkck+ckak=k^2\left(ab+bc+ca\right)=0\)

18 tháng 1 2017

pt 1) x=y=z  Cosi 3 số 

15 tháng 11 2018

a/ Đảo ngược lại rồi đặc \(\frac{1}{x}=a;\frac{1}{y}=b;\frac{1}{z}=c\)

15 tháng 11 2018

b/ Dễ thấy vai trò x, y, z như nhau nên ta chỉ cần xét 1 trường hợp tiêu biểu thôi.

Xét \(x>y>z\)

\(\Rightarrow\frac{1}{x}< \frac{1}{y}< \frac{1}{z}\)

\(\Rightarrow x+\frac{1}{y}>z+\frac{1}{x}\)(trái giả thuyết)

\(\Rightarrow x=y=z\)'

\(\Rightarrow x+\frac{1}{x}=2\)

\(\Leftrightarrow x=1\)

31 tháng 7 2019

Ta có \(\frac{\sqrt{x^2+2y^2}}{xy}=\sqrt{\frac{1}{y^2}+\frac{2}{x^2}}\)

Áp dụng BĐT Buniacoxki ta có 

\(\sqrt{\left(\frac{1}{y^2}+\frac{2}{x^2}\right)\left(1+2\right)}\ge\sqrt{\left(\frac{1}{y}+\frac{2}{x}\right)^2}=\frac{1}{y}+\frac{2}{x}\)

=> \(\sqrt{3}A\ge3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=3\)

=> \(A\ge\sqrt{3}\)

\(MinA=\sqrt{3}\)khi x=y=z=3

25 tháng 5 2018

(x+y+z)²=x²+y²+z²+2(xy+yz+zx)

→ x²+y²+z²=(1/2)²-2.(-2)=17/4

(x+y+z)³=x³+y³+z³+3(x+y)(y+z)(z+x)

=x³+y³+z³+3(x+y+z)(xy+yz+zx)-3xyz

→ x³+y³+z³=(1/2)³+3.(-1/2)-3.1/2.(-2)=13/8

(xy+yz+zx)²=x²y²+y²z²+z²x²+2xyz(x+y+z)

→ x²y²+y²z²+z²x²=(-2)²-2.1/2.(-1/2)=9/2

(x²+y²+z²)(x³+y³+z³)=x^5+y^5+z^5+(x²y²+y²z²+z²x²)(x+y+z)-xyz(xy+yz+zx)

→ x^5+y^5+z^5=17/4.13/8+(-2).(-1/2)-9/2.1/2=181/32