rút gọn đa thức sau
\(\frac{2xy}{x^2-y^2}+\frac{x-y}{2x+2y}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B) Ta có: 2x-2y-x2+2xy-y2
⇔ 2(x-y)-(x2-2xy+y2)
⇔ 2(x-y)-(x-y)2
⇔ (x-y)(2-x+y)
Đúng thì tick nhé
Ta có: \(\frac{x^2y+2xy^2+y^3}{2x^2+xy-y^2}\)
\(=\frac{x^2y+xy^2+xy^2+y^3}{2x^2+2xy-xy-y^2}\)
\(=\frac{xy\left(x+y\right)+y^2\left(x+y\right)}{2x\left(x+y\right)-y\left(x+y\right)}\)
\(=\frac{\left(x+y\right)\left(xy+y^2\right)}{\left(2x-y\right)\left(x+y\right)}=\frac{xy+y^2}{2x-y}\left(đpcm\right)\)
Ta có: \(\frac{x^2+3xy+2y^2}{x^3+2x^2y-xy^2-2y^3}\)
\(=\frac{x^2+xy+2xy+2y^2}{x^2\left(x+2y\right)-y^2\left(x+2y\right)}\)
\(=\frac{x\left(x+y\right)+2y\left(x+y\right)}{\left(x^2-y^2\right)\left(x+2y\right)}\)
\(=\frac{\left(x+2y\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)\left(x+2y\right)}=\frac{1}{x-y}\left(đpcm\right)\)
Rút gọn :
a ) \(\frac{x^2y+2xy^2+y^3}{2x^2+xy-y^2}\)
\(=\frac{y\left(x^2+2xy+y^2\right)}{2x^2+2xy-xy-y^2}\)
\(=\frac{y\left(x+y\right)^2}{2x\left(x+y\right)-y\left(x+y\right)}\)
\(=\frac{y\left(x+y\right)}{2x-y}\)
\(=\frac{xy+y^2}{2x-y}\)
A=\(\left(3xy^2-2xy^2-4xy^2\right)+\left(2x^2y+\frac{1}{4}x^2y\right)+\left(xy+\frac{1}{5}xy\right)\)
A=\(-3xy^2+\frac{9}{4}x^2y+\frac{6}{5}xy\)
\(\frac{2xy}{x^2-y^2}+\frac{x-y}{2x+2y}\)
\(=\frac{2xy}{\left(x-y\right)\left(x+y\right)}+\frac{x-y}{2\left(x+y\right)}\)
\(=\frac{4xy}{2\left(x-y\right)\left(x+y\right)}+\frac{\left(x-y\right)\left(x-y\right)}{2\left(x+y\right)\left(x-y\right)}\)
\(=\frac{4xy+x^2-xy-xy-y^2}{2\left(x-y\right)\left(x+y\right)}\)
\(=\frac{2xy+x^2-y^2}{2\left(x-y\right)\left(x+y\right)}\)
\(=\frac{\left(x-y\right)^2}{2\left(x-y\right)\left(x+y\right)}\)
\(=\frac{x-y}{2\left(x+y\right)}=\frac{x-y}{2x+2y}\)