Chứng minh rằng : n( n+7) là số tự nhiên chẵn với ọi số n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu n là chẵn thì n+1 là lẻ.
Ta có: n.(n+1) là chẵn nhân lẻ nên sẽ có kết quả n.(n+1) là chẵn.
Nếu n là lẻ thì n+1 là chẵn
Ta có: n.(n+1) là lẻ nhân chẵn nên sẽ có kết quả n.(n+1) là chẵn
Vậy n . ( n + 1 ) là số chẵn với mọi số tự nhiên n
xet n=2k =>n chia het cho 2
xét n=2k+1=>n+1=2k+1+1=2k+2=2(k+1) chia hết cho 2
vay n.(n+1) la so chan voi moi so tu nhien n
Nếu n là số chẵn thì n + 7 là số lẻ
số lẻ . số chẵn = số chẵn ((n+7).n)
nếu n là số lẻ thì n + 7 là số chẵn
số lè . số chẵn = số chẵn (n.(n+7))
Nếu n không chia hết cho 2 thì n có dạng 2k+1 (kϵN)
⇒ (n+4).(n+7)=(2k+1+4).(2k+1+7)=(2k+5).(2k+8)⋮2 (vì 2k+8⋮2) (1)
Nếu n chia hết cho 2 thì n có dạng 2k (kϵN)
⇒ (n+4).(n+7)=(2k+4).(2k+7)⋮2 (vì 2k+4⋮2) (2)
Từ (1) và (2)⇒ Với mọi số tự nhiên n thì tích (n+4).(n+7)⋮2 (ĐPCM)
Vì n là số tự nhiên nên n có dạng 2k hoặc 2k + 1 ( k ϵ N )
Nếu n = 2k
⇒ 2k + 4 = 2( k + 2 ) ⋮ 2
Suy ra ( n + 4 )( n + 7 ) ⋮ 2 hay ( n + 4 )( n + 7 ) là số chẵn
Nếu n = 2k + 1
⇒ 2k + 8 = 2( k + 4 ) ⋮ 2
Suy ra ( n + 4 )( n + 7 ) ⋮ 2 hay ( n + 4 )( n + 7 ) là số chẵn
Vậy với mọi số tự nhiên n thì ( n + 4 )( n + 7 ) là số chẵn
n là số tự nhiên => n = 2k+1 hoặc n = 2k (k thuộc N)
Xét n = 2k+1 => (n+4)(n+7) = (2k+5)(2k+8) = 4k^2 + 10k + 16k + 40 = 4k^2 + 26k + 40 là số chẵn
Xét n = 2k => (n+4)(n+7) = (2k+4)(2k+7) = 4k^2 + 22k + 28 là số chẵn.
Vậy với mọi số tự nhiên n thì (n+4)(n+7) là một số chẵn :))
Đặt n là số lẻ suy ra n=2k+1
suy ra (n+4)(n+7) = (2k+1+4)(2k+1+7) = (2k+5)(2k+8) = 4k^2 +16k + 10k + 40 = 4k^2 + 26k + 40 = 2(2k^2+13k+20)
vậy suy ra trong trường hợp này (n+4)(n+7) chia hết cho 2
xét n là số chẵn nên n=2k
ta có
(n+4)(n+7) = (2k+4) +(2k+7) = 4k^2+ 14k + 8k + 28 = 4k^2 + 22k + 28 = 2(2k^2+11k+14)
vậy suy ra trong trường hop85 này (n+4)(n+7) chia hết cho 2
vậy (n+4)(n+7) luôn là số chẵn với mọi số tự nhiên n
Với n là số tự nhiên chẵn thì (n+4) là một số chẵn
Suy ra tích (n+4)(n+7) là một số chẵn.
Với n là số tự nhiên lẻ thì (n+7) là một số chẵn nên tích (n+4)(n+7) là một số chẵn.
Vậy (n+4)(n+7) luôn là một số chẵn với mọi số tự nhiên n.
Vì n là một số tự nhiên nên có 2 trương hợp:
th1:nếu n là số chẵn thì n+4 là một số chẵn nên tích (n+4)(n+7) là số chẵn
th2:nếu n là số lẻ thì n+7 là số một chẵn nên tích (n+4)(n+7) là số chẵn
=>(n+4)(n+7) luôn là số chẵn
Tham khảo câu hỏi tương tự nhé bạn
Tick tớ nhé Huỳnh Ngọc Mỹ
*Xét n lẻ=>n+7 chẵn
=>(n+4).(n+7) là số chẵn
*Xét n chẵn=>n+4 chẵn
=>(n+4).(n+7) là số chẵn
Vậy (n+4).(n+7) là số chẵn
+ nếu n là số lẻ thì n + 7 là số chẵn => n(n + 7) là số chẵn
+ nếu n là số chẵn thì n(n + 7) là số chẵn
Vậy với mọi số n thì n(n + 7) là số chẵn
Sẽ có 2 trường hợp
TH1: n là số lẻ
n+7 sẽ bằng 1 số chẵn => n(n+7) là số tự nhiên chẵn
TH2: n là số chẵn
=>n(n+7) là số tự nhiên chẵn vì số chẵn nhân với số nào cũng được tích là 1 số chẵn