K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2018

Đặt \(\left(x;y;z\right)=\left(a^3;b^3;c^3\right)\) Do \(xyz=1\Rightarrow abc=1\)

Ta có \(M=\frac{1}{a^3+b^3+1}+\frac{1}{b^3+c^3+1}+\frac{1}{a^3+c^3+1}\)

Cần chứng minh \(a^3+b^3\ge ab\left(a+b\right)\) \(BĐT\Leftrightarrow\left(a+b\right)\left(a-b\right)^2\ge0\left(true\right)\)

\(\Rightarrow\frac{1}{a^3+b^3+1}\le\frac{1}{ab\left(a+b\right)+1}=\frac{abc}{ab\left(a+b+c\right)}=\frac{c}{a+b+c}\)

Tương tự cộng lại ra ĐPCM

19 tháng 7 2017

Áp dụng BĐT AM-GM ta có:

\(\frac{\sqrt{1+x^3+y^3}}{xy}\ge\frac{\sqrt{3\sqrt[3]{x^3y^3}}}{xy}=\frac{\sqrt{3xy}}{xy}=\frac{\sqrt{3}}{\sqrt{xy}}\)

Tương tự cho 2 BĐT còn lại ta có:

\(\frac{\sqrt{1+y^3+z^3}}{yz}\ge\frac{\sqrt{3}}{\sqrt{yz}};\frac{\sqrt{1+z^3+x^3}}{xz}\ge\frac{\sqrt{3}}{\sqrt{xz}}\)

Cộng theo vế 3 BĐT trên ta có:

\(M\ge\sqrt{3}\left(\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\right)=\sqrt{3}\cdot\left(\frac{\sqrt{x}}{\sqrt{xyz}}+\frac{\sqrt{y}}{\sqrt{xyz}}+\frac{\sqrt{z}}{\sqrt{xyz}}\right)\)

\(=\sqrt{3}\cdot\frac{\sqrt{x}+\sqrt{y}+\sqrt{z}}{\sqrt{xyz}}\ge\sqrt{3}\cdot\frac{3\sqrt[3]{\sqrt{xyz}}}{1}=3\sqrt{3}\)

Khi \(x=y=z=1\)

22 tháng 8 2020

Dat \(\left(a,b,c\right)=\left(\frac{1}{x},\frac{1}{y},\frac{1}{z}\right)\left(a,b,c>0,abc=1\right)\)

Ta co \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\Rightarrow\frac{3}{ab+bc+ca}\ge\frac{9}{\left(a+b+c\right)^2}\left(1\right)\)

BDT phu \(1+\frac{3}{ab+bc+ca}\ge\frac{6}{a+b+c}\left(2\right)\)

Do (1) nen (2) tuong duong voi

\(1+\frac{9}{\left(a+b+c\right)^2}\ge\frac{6}{a+b+c}\Leftrightarrow\left(1-\frac{3}{a+b+c}\right)^2\ge0\left(dung\right)\)

Suy ra (2) duoc chung minh

Do \(abc=1\Rightarrow\hept{\begin{cases}ab=\frac{1}{xy}=\frac{xyz}{xy}=z\\bc=x\\ca=y\end{cases}}\)

nen (2) tuong duong \(1+\frac{3}{x+y+z}\ge\frac{6}{xy+yz+zx}\)

=> \(\frac{1}{x+y+z}\ge\frac{1}{3}\left(\frac{6}{x+y+z}-1\right)=\frac{2}{x+y+z}-\frac{1}{3}\)

Suy ra \(P\ge\frac{2}{x+y+z}-\frac{1}{3}-\frac{2}{x+y+z}=-\frac{1}{3}\)

Dau = xay ra khi x=y=z=1

8 tháng 9 2020

Câu a đề hơi sai nha bạn, nên mình chỉ giải câu b thoi

Áp dụng AM-GM cho các bộ 3 số dương (x,y,z) và (1/x,1/y,1/z):

\(x+y+z\ge3\sqrt[3]{xyz}\)

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{3}{\sqrt[3]{xyz}}\)

\(\Rightarrow P\ge6\sqrt[3]{xyz}+\frac{3}{\sqrt[3]{xyz}}\ge2\sqrt{6\sqrt[3]{xyz}.\frac{3}{\sqrt[3]{xyz}}}=6\sqrt{2}\)(BĐT Cô-si)

Dấu = xảy ra khi và chỉ khi \(x=y=z=\frac{1}{\sqrt{2}}\)( thỏa x,y,z thuộc (0;1))

12 tháng 9 2020

Mình cần câu a ạ :<

22 tháng 11 2019

Câu hỏi của Hoàng Thái Dương - Toán lớp 8 - Học toán với OnlineMath

14 tháng 8 2020

\(P=\frac{9}{1-2\left(xy+yz+xz\right)}+\frac{2}{xyz}=\frac{9}{\left(x+y+z\right)^2-2\left(xy+yz+xz\right)}+\frac{2\left(x+y+z\right)}{xyz}\)

\(=\frac{9}{x^2+y^2+z^2}+\frac{6\sqrt[3]{xyz}}{xyz}\ge\frac{9}{x^2+y^2+z^2}+\frac{18}{3\sqrt[3]{x^2y^2z^2}}\)

\(\ge\frac{9}{x^2+y^2+z^2}+\frac{36}{2\left(xy+yx+xz\right)}\ge9\left(\frac{1}{\left(x+y+z\right)^2}+\frac{2^2}{2\left(xy+yz=xz\right)}\right)\)

\(\ge\frac{81}{\left(x+y+z\right)^2=81}\)

Dấu = xảy ra khi x =  y = z = 1/3

16 tháng 8 2020

Xét: \(x^4+y^4-xy\left(x^2+y^2\right)=\left(x^2+y^2+xy\right)\left(x-y\right)^2\ge0\)

\(\Rightarrow x^4+y^4\ge xy\left(x^2+y^2\right)\)(*)

Tương tự với (*) ta có: \(\hept{\begin{cases}y^4+z^4\ge yz\left(y^2+z^2\right)\\z^4+x^4\ge zx\left(z^2+x^2\right)\end{cases}}\)

\(\Rightarrow\Sigma_{cyc}\frac{1}{x^4+y^4+z}\le\Sigma_{cyc}\frac{1}{xy\left(x^2+y^2\right)+z.xyz}=\Sigma_{cyc}\frac{1}{xy\left(x^2+y^2+z^2\right)}=\frac{x+y+z}{x^2+y^2+z^2}\)

Ta có:\(x^2+y^2+z^2\ge\frac{1}{3}\left(x+y+z\right)^2\) và \(x+y+z\ge3\sqrt[3]{xyz}=3\)

\(\Rightarrow\Sigma_{cyc}\frac{1}{x^4+y^4+z}\le\frac{x+y+z}{x^2+y^2+z^2}\le\frac{1}{\frac{1}{3}\left(x+y+z\right)}\le1\)

Dấu "=" xảy ra khi x=y=z=1