K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
12 tháng 3 2023

Ta có: \(1\le a\le b< c\le d\le e\le9\)

\(\Rightarrow1\le a< b+1< c+1< d+2< e+3\le12\)

Đặt \(\left\{a;b+;c+1;d+2;e+3\right\}=\left\{a_1;a_2;a_3;a_4;a_5\right\}\)

Với mỗi bộ \(a_1;a_2;a_3;a_4;a_5\) sẽ cho tương ứng đúng một bộ abcde và ngược lại

\(\Rightarrow\) Số chữ số dạng \(abcde\) bằng với số bộ \(a_1a_2a_3a_4a_5\) sao cho:

\(1\le a_1< a_2< a_3< a_4< a_5\le12\)

Chọn bộ 5 chữ số khác nhau từ 12 chữ số có \(C_{12}^5\) cách

Có đúng 1 cách sắp xếp 5 chữ số này theo thứ tự lớn dần

\(\Rightarrow\) Có \(C_{12}^5\) chữ số tự nhiên thỏa mãn yêu cầu

Có \(A^5_9=15120\left(số\right)\)

8 tháng 7 2021

sửa lại câu b

Nếu e={1;3;5;7;9} thì a có 8 cách chọn; b có 8 cách chọn; c có 7 cách chọn; d có 6 cách chọn

Vậy có 8.8.7.6.5=13440 số thỏa mãn đề bài

Xin lỗi bạn nhé

8 tháng 7 2021

a, Giả sử số cần tìm là \(\overline{abcde}\) \(\left(a\ne b\ne c\ne d\ne e,a\ne0\right)\)

- Chọn a có 9 cách.

- Chọn b, c, d, e có \(A^4_9\) cách

⇒ Có: \(9.A^4_9=27216\) (số)

b, Gọi số cần tìm là \(\overline{abcde}\) \(\left(a\ne b\ne c\ne d\ne e,a\ne0,e\in\left\{1,3,5,7,9\right\}\right)\)

- Chọn e có 5 cách.

- Chọn a có 8 cách.

- Chọn b, c, d có \(A^3_8\) cách.

⇒ Có \(5.8.A^3_8=13440\) (số)

Số lượng số cần tìm sẽ là A59=15120(sô)

CHúng ta chỉ cần lựa ra 5 số từ 9 số {1;2;...;9} rồi sắp xếp lại là đc

15 tháng 8 2021

Nguyễn Việt Lâm

16 tháng 8 2021

Nguyễn Việt Lâm

30 tháng 8 2019

Đáp án cần chọn là: B

29 tháng 10 2018

Số cách chọn : \(5\times6\times6\times6=1080\)(vì chỉ có 5 cách chọn số đứng đầu)

b) số cách lập số tự nhiên có 4 chữ số :

-Có 5 cách chọn chữ số làm số đầu (1;2;3;4;5) vì số 0 không đứng đầu được

-Có 5 cách chon số thứ hai vì đã chọn 1 số đứng đầu

-Có 4 cách chọn số thứ ba vì đã chọn hai số đầu 

-có 3 cách chon số thứ 4 vì chọn 3 số đầu

Suy ra có số cách chọn : \(5\times5\times4\times3=300\)

23 tháng 8 2021

a, Có \(5!=120\) số tự nhiên thỏa mãn yêu cầu bài toán.

b, Số có dạng \(\overline{abcde}\).

e có 3 cách chọn.

a có 4 cách chọn.

b có 3 cách chọn.

c có 2 cách chọn.

d có 1 cách chọn.

\(\Rightarrow\) Có \(3.4.3.2.1=72\) số tự nhiên thỏa mãn yêu cầu bài toán.