K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: \(AD=DC=\dfrac{AC}{2}\)(D là trung điểm của AC)

\(AE=EB=\dfrac{AB}{2}\)(E là trung điểm của AB)

mà AC=AB(ΔBAC cân tại A)

nên AD=DC=AE=EB

Xét ΔADE có AE=AD(cmt)

nên ΔADE cân tại A(Định nghĩa tam giác cân)

b) Xét ΔADB và ΔAEC có

AB=AC(ΔABC cân tại A)

\(\widehat{BAD}\) chung

AD=AE(cmt)

Do đó: ΔADB=ΔAEC(c-g-c)

c) Ta có: ΔAED cân tại A(gt)

nên \(\widehat{AED}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔAED cân tại A)(1)

Ta có: ΔABC cân tại A(gt)

nên \(\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔABC cân tại A)(2)

Từ (1) và (2) suy ra \(\widehat{AED}=\widehat{ABC}\)

mà hai góc này là hai góc ở vị trí đồng vị

nên ED//BC(Dấu hiệu nhận biết hai đường thẳng song song)

Xét tứ giác BCDE có ED//BC(cmt)

nên BCDE là hình thang có hai đáy là ED và BC(Định nghĩa hình thang)

Hình thang BCDE(ED//BC) có BD=EC(ΔADB=ΔAEC)

nên BCDE là hình thang cân(Dấu hiệu nhận biết hình thang cân)

26 tháng 8 2017

Sử dụng tính chất đường trung bình, ta chứng minh được DE//BC

Xét ΔABC có 

\(\dfrac{AE}{AB}=\dfrac{AD}{AC}\)

Do đó: DE//CB

Xét tứ giác BEDC có DE//BC

nên BEDC là hình thang

mà \(\widehat{EBC}=\widehat{DCB}\)

nên BEDC là hình thang cân

27 tháng 8 2021

bạn ơi bạn chứng minh sai rùi ở cuối ý nếu mà 2 góc đáy bằng nhau chưa chắc đã là hình thang cân đâu chẳng hạn hình vuông 2 đáy cũng = nhau ......

nên bạn cm sai rùi sửa lại đi bạn cm 2 đường chéo bằng nhau

AH
Akai Haruma
Giáo viên
5 tháng 11 2023

Lời giải:

Vì $D$ là trung điểm $AC, $E$ là trung điểm $AB$ nên $ED$ là đường trung bình ứng với cạnh $BC$ của tam giác $ABC$

$\Rightarrow ED\parallel BC$

$\Rightarrow BEDC$ là hình thang.

Mà 2 góc ở đáy $\widehat{B}=\widehat{C}$ (do tam giác $ABC$ cân tại $A$)

$\Rightarrow BEDC$ là hình thang cân.

AH
Akai Haruma
Giáo viên
5 tháng 11 2023

Hình vẽ:

16 tháng 6 2019

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Tam giác ABC vuông cân tại A

⇒ ∠ (ACB) = 45 0

Tam giác EAC vuông cân tại E

⇒  ∠ (EAC) =  45 0

Suy ra:  ∠ (ACB) =  ∠ (EAC)

⇒ AE // BC (vì có cặp góc ở vị trí so le trong bằng nhau)

nên tứ giác AECB là hình thang có  ∠ E =  90 0 . Vậy AECB là hình thang vuông

5 tháng 2 2022

undefined

29 tháng 6 2017

Hình thang