K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2018

\(\left(x-99\right)^{1000}+\left(x-100\right)^{2000}=1\)

+) Với \(x=99\)\(;\)\(x=100\) thì \(VT=1\) hay \(x=99\)\(;\)\(x=100\) là nghiệm của pt 

+) Với \(x< 99\) thì \(\left(x-99\right)^{1000}>0\)\(;\)\(\left(x-100\right)^{2000}>1\)

\(\Rightarrow\)\(\left(x-99\right)^{1000}+\left(x-100\right)^{2000}>1\) ( pt vô nghiệm ) 

+) Với \(x>100\) thì \(\left(x-99\right)^{1000}>1\)\(;\)\(\left(x-100\right)^{2000}>0\)

\(\Rightarrow\)\(\left(x-99\right)^{1000}+\left(x-100\right)^{2000}>1\) ( pt vô nghiệm ) 

+) Với \(99< x< 100\) thì \(0< x-99< 1\)\(;\)\(-1< x-100< 0\)

\(\Rightarrow\)\(\left(x-99\right)^{1000}< \left|x-99\right|=x-99\)\(;\)\(\left(x-100\right)^{2000}< \left|x-100\right|=100-x\)

\(\Rightarrow\)\(\left(x-99\right)^{1000}+\left(x-100\right)^{2000}< x-99+100-x=1\) ( pt vô nghiệm ) 

Vậy nghiệm của phương trình là \(x=99\) hoặc \(x=100\)

Chúc bạn học tốt ~ 

31 tháng 10 2018

Dùng phương pháp giảm bậc đê! Bậc cao kiểu này ai giải nổi!!

\(\left(x-9\right)^{1000}+\left(x-100\right)^{2000}=1\)

\(\Leftrightarrow\left(x-9\right)^{1000}+\left[\left(x-100\right)^2\right]^{1000}=1\)

\(\Leftrightarrow\left(x-9\right)+\left(x-100\right)^2=1\)

Suy ra không có x nào thỏa mãn

31 tháng 10 2018

vì (x-9)1000có số mũ chẵn

     (x-100)2000có số mũ chẵn

suy ra cả hai thừa số trên sẽ ko âm 

vậy để (x-9)1000+(x-100)2000=1 ta có 2 trường hợp

th1: (x-9)1000=1;(x-100)2000=0

vậy x sẽ ko thỏa mãn cả 2 điều kiện trên

th2:(x-9)1000=0;(x-100)2000=1

vậy x sẽ ko thỏa mãn cả hai điều kiện

vậy x ko có kết quả

a, \(\frac{1}{1.4}\)+\(\frac{1}{4.7}\)+......+\(\frac{1}{97.100}\)= |\(\frac{x}{3}\)|

\(\Rightarrow\)\(\frac{1}{3}\) ( \(\frac{3}{1.4}\)+\(\frac{3}{4.7}\)+.......+\(\frac{3}{97.100}\))= |\(\frac{x}{3}\)|

\(\Rightarrow\)\(\frac{1}{3}\) ( 1  - \(\frac{1}{4}\)\(\frac{1}{4}\)-\(\frac{1}{7}\)+......+\(\frac{1}{97}\)-\(\frac{1}{100}\)) = |\(\frac{x}{3}\)|

\(\Rightarrow\)\(\frac{1}{3}\) ( 1-\(\frac{1}{100}\)) = |\(\frac{x}{3}\)|

\(\Rightarrow\)\(\frac{1}{3}\) . \(\frac{99}{100}\) = |\(\frac{x}{3}\)|

\(\Rightarrow\)\(\frac{33}{100}\) = |\(\frac{x}{3}\)|

\(\Rightarrow\)\(\frac{x}{3}\)\(\orbr{\begin{cases}\frac{33}{100}\\\frac{-33}{100}\end{cases}}\)

Với \(\frac{x}{3}\) = \(\frac{33}{100}\)

\(\Rightarrow\)100x= 33.3

 \(\Rightarrow\)100x=99

\(\Rightarrow\)x=\(\frac{99}{100}\)

Với \(\frac{x}{3}\)=\(\frac{-33}{100}\)

\(\Rightarrow\)100x=-33.3

\(\Rightarrow\)100x=-99

\(\Rightarrow\)x=\(\frac{-99}{100}\)

Vậy x=\(\orbr{\begin{cases}\frac{99}{100}\\\frac{-99}{100}\end{cases}}\)

b, \(\frac{4}{1.5}\)\(\frac{4}{5.9}\)+......+ \(\frac{4}{97.101}\)= |\(\frac{5x-4}{101}\)|

\(\Rightarrow\)1-\(\frac{1}{5}\)+\(\frac{1}{5}\)-\(\frac{1}{9}\)+......+\(\frac{1}{97}\)-\(\frac{1}{101}\)= |\(\frac{5x-4}{101}\)|

\(\Rightarrow\)1-\(\frac{1}{101}\)= |\(\frac{5x-4}{101}\)

\(\Rightarrow\) \(\frac{100}{101}\)= |\(\frac{5x-4}{101}\)|

\(\Rightarrow\)\(\frac{5x-4}{101}\) =\(\orbr{\begin{cases}\frac{100}{101}\\\frac{-100}{101}\end{cases}}\)

Với \(\frac{5x-4}{101}\) =\(\frac{100}{101}\)

\(\Rightarrow\)(5x-4).101=100.101

\(\Rightarrow\)505x-404=10100

\(\Rightarrow\)505x=10504

\(\Rightarrow\)x=\(\frac{104}{5}\)

Với \(\frac{5x-4}{101}\)=\(\frac{-100}{101}\)

\(\Rightarrow\)(5x-4). 101=-100.101

\(\Rightarrow\)505x-404=-10100

\(\Rightarrow\)505x=-9696

\(\Rightarrow\)x=\(\frac{-96}{5}\)

Vậy x=\(\orbr{\begin{cases}\frac{104}{5}\\\frac{-96}{5}\end{cases}}\)

20 tháng 3 2020

Đúng là chơi lừa bịp thực sự bài này rất dễ đây là cách giải:

ta có: \(\left(x+y\right)^2+\left(y+z\right)^4+.....+\left(x+z\right)^{100}\ge0\)còn \(-\left(y+z+x\right)\le0\)  nên phương trình 1 vô lý 

tương tự chứng minh phương trinh 2 và 3 vô lý 

vậy \(\hept{\begin{cases}x=\varnothing\\y=\varnothing\\z=\varnothing\end{cases}}\)

thực sự bài này mới nhìn vào thì đánh lừa người làm vì các phương trình rất phức tạp nhưng nếu nhìn kĩ lại thì nó rất dễ vì các trường hợp đều vô nghiệm

20 tháng 4 2020

\(\left(x+y\right)^2+\left(y+z\right)^4+...+\left(x+z\right)^{100}=-\left(y+z+x\right)\)

Đặt : \(A=\left(x+y\right)^2+\left(y+z\right)^4+...+\left(x+z\right)^{100}\)

Ta dễ dàng nhận thấy tất cả số mũ đều chẵn 

\(=>A\ge0\)(1)

Đặt : \(B=-\left(y+z+x\right)\)

\(=>B\le0\)(2)

Từ 1 và 2 \(=>A\ge0\le B\)

Dấu "=" xảy ra khi và chỉ khi \(A=B=0\)

Do \(B=0< =>y+z+x=0\)(3)

\(A=0< =>\hept{\begin{cases}x+y=0\\y+z=0\\x+z=0\end{cases}}\)(4)

Từ 3 và 4 \(=>x=y=z=0\)

Vậy nghiệm của pt trên là : {x;y;z}={0;0;0}

\(\left(x+1\right)+\left(x+2\right)+...+\left(x+100\right)=5750\)

\(\left(x\cdot100\right)+\left(1+2+...+100\right)=5750\)

\(\left(x\cdot100\right)+\left(100+1\right)\cdot\frac{100}{2}=5750\)

\(\left(x\cdot100\right)+101\cdot50=5750\)

\(\left(x\cdot100\right)+5050=5750\)

\(x\cdot100=5750-5050\)

\(x\cdot100=700\)

\(x=700\div100\)

\(x=7\)

7 tháng 5 2018

Ta có: ( x+1)+(x+2)+(x+3)+.....+(x+99)+(x+100)=5750

<=>(x+x+x+....+x+x)+(1+2+3+..+99+100)=5750

<=> 100x+5050=5750

=>100x=5750-5050

=>100x=700

=>x=700:100

=>x=7

Vậy x=7

 hoặc mở câu hỏi tương tự tham khảo.

6 tháng 8 2023

1. Để tìm các đa thức P(x) thỏa mãn điều kiện P(2014) = 2046 và P(x) = P(x^2 + 1) - 33 + 32, ∀x ≥ 0, ta có thể sử dụng phương pháp đệ quy. Bước 1: Xác định bậc của đa thức P(x). Vì không có thông tin về bậc của đa thức, chúng ta sẽ giả sử nó là một hằng số n. Bước 2: Xây dựng công thức tổng quát cho đa thức P(x). Với bậc n đã xác định, ta có: P(x) = a_n * x^n + a_{n-1} * x^{n-1} + ... + a_0 Bước 3: Áp dụng điều kiện để tìm các hệ số a_i. Thay x = 2014 vào biểu thức và giải phương trình: P(2014) = a_n * (2014)^n + a_{n-1} * (2014)^{n-1} + ... + a_0 = 2046 Giải phương trình này để tìm các giá trị của các hệ số. Bước 4: Áp dụng công thức tái lập để tính toán các giá trị tiếp theo của P(x): P(x) = P(x^2+1)-33+32 Áp dụng công thức này lặp lại cho đến khi đạt được kết quả cuối cùng. 2. Để tìm các đa thức P(x) ∈ Z[x] bậc n thỏa mãn điều kiện [P(2x)]^2 = 16P(x^2), ∀x ∈ R, ta có thể sử dụng phương pháp đệ quy tương tự như trên. Bước 1: Xác định bậc của đa thức P(x). Giả sử bậc của P(x) là n. Bước 2: Xây dựng công thức tổng quát cho P(x): P(x) = a_n * x^n + a_{n-1} * x^{n-1} + ... + a_0 Bước 3: Áp dụng điều kiện để tìm các hệ số a_i. Thay x = 2x vào biểu thức và giải phương trình: [P(2x)]^2 = (a_n * (2x)^n + a_{n-1} * (2x)^{n-1} + ... + a_0)^2 = 16P(x^2) Giải phương trình này để tìm các giá trị của các hệ số. Bước 4: Áp dụng công thức tái lập để tính toán các giá trị tiếp theo của P(x): [P(4x)]^2 = (a_n * (4x)^n + a_{n-1} * (4x)^{n-1} + ... + a_0)^2 = 16P(x^2) Lặp lại quá trình này cho đến khi đạt được kết quả cuối cùng.

 

7 tháng 10 2018

\(Q=\frac{x^3}{\left(x-y\right)\left(x-z\right)}+\frac{y^3}{\left(y-x\right)\left(y-z\right)}+\frac{z^3}{\left(z-x\right)\left(z-y\right)}\)

\(=\frac{x^3}{\left(x-y\right)\left(x-z\right)}-\frac{y^3}{\left(x-y\right)\left(y-z\right)}+\frac{z^3}{\left(x-z\right)\left(y-z\right)}\)

\(=\frac{x^3\left(y-z\right)-y^3\left(x-z\right)+z^3\left(x-y\right)}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)(1)

Ta có: 

      \(x^3\left(y-z\right)-y^3\left(x-z\right)+z^3\left(x-y\right)\)

\(=x^3\left(y-z\right)-y^3\left(y-z\right)-y^3\left(x-y\right)+z^3\left(x-y\right)\)

\(=\left(y-z\right)\left(x^3-y^3\right)-\left(x-y\right)\left(y^3-z^3\right)\)

\(=\left(y-z\right)\left(x-y\right)\left(x^2+xy+y^2\right)-\left(x-y\right)\left(y-z\right)\left(y^2+yz+z^2\right)\)

\(=\left(x-y\right)\left(y-z\right)\left(x^2+xy+y^2-y^2-yz-z^2\right)\)

\(=\left(x-y\right)\left(y-z\right)\left(x^2+xy-yz-z^2\right)\)

\(=\left(x-y\right)\left(y-z\right)\left[\left(x-z\right)\left(x+z\right)+y\left(x-z\right)\right]\)

\(=\left(x-y\right)\left(y-z\right)\left(x-z\right)\left(x+y+z\right)=1000\left(x-y\right)\left(y-z\right)\left(x-z\right)\)(2)

Từ (1) và (2), ta có Q = 1000

10 tháng 4 2021

a) Quy luật là gì ??

b) 

Đặt

 \(A=\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2020}}\\\Rightarrow2A=1+\dfrac{1}{2}+...+\dfrac{1}{2^{2019}}\\ \Rightarrow2A-A=1-\dfrac{1}{2^{2020}}\Rightarrow A=1-\dfrac{1}{2^{2020}}\)

Suy ra , phương trình trở thành :

213 -x  =13

<=> x=200

NV
7 tháng 2 2021

\(P=\dfrac{1}{3x\left(y+z\right)+x+y+z}+\dfrac{1}{3y\left(z+x\right)+x+y+z}+\dfrac{1}{3z\left(x+y\right)+x+y+z}\)

\(P\le\dfrac{1}{3x\left(y+z\right)+3\sqrt[3]{xyz}}+\dfrac{1}{3y\left(z+x\right)+3\sqrt[3]{xyz}}+\dfrac{1}{3z\left(x+y\right)+3\sqrt[3]{xyz}}\)

\(P\le\dfrac{1}{3x\left(y+z\right)+3}+\dfrac{1}{3y\left(z+x\right)+3}+\dfrac{1}{3z\left(x+y\right)+3}\)

Đặt \(\left(x;y;z\right)=\left(a^3;b^3;c^3\right)\Rightarrow abc=1\)

\(\Rightarrow P\le\dfrac{1}{3}\left(\dfrac{1}{a^3\left(b^3+c^3\right)+1}+\dfrac{1}{b^3\left(c^3+a^3\right)+1}+\dfrac{1}{c^3\left(a^3+b^3\right)+1}\right)\)

\(\Rightarrow P\le\dfrac{1}{3}\left(\dfrac{1}{a^3bc\left(b+c\right)+1}+\dfrac{1}{b^3ac\left(a+c\right)+1}+\dfrac{1}{c^3ab\left(a+b\right)+1}\right)\)

\(\Rightarrow P\le\dfrac{1}{3}\left(\dfrac{bc}{a\left(b+c\right)+bc}+\dfrac{ac}{b\left(a+c\right)+ac}+\dfrac{ab}{c\left(a+b\right)+ab}\right)=\dfrac{1}{3}\)

\(P_{max}=\dfrac{1}{3}\) khi \(a=b=c=1\) hay \(x=y=z=1\)