Tìm giá trị nhỏ nhất của biểu thức : A = \(|x|\)+ \(|8-x|\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có
\(A=\left|x-8\right|+\left|x+2\right|+\left|x+5\right|+\left|x+7\right|\ge\left|-x+8-x-2+x+5+x+7\right|=18\)
Dấu bằng xảy ra khi \(-5\le x\le-2\)
\(B=\left|x+3\right|+\left|x-5\right|+\left|x-2\right|\ge\left|x+3-x+5\right|+\left|x-2\right|=8+\left|x-2\right|\ge8\)
Dấu bằng xảy ra khi \(x=2\)
\(C=\left|x+5\right|-\left|x-2\right|\le\left|x+5+2-x\right|=7\)
Dấu bằng xảy ra khi \(x\ge2\)
Có : A >= 0 + 8 = 8
Dấu "=" xảy ra <=> 1-x=0 <=> x=1
Vậy GTNN của A = 8 <=> x=1
Có : B < = 15 - 0 = 15
Dấu "=" xảy ra <=> x-7=0 <=> x=7
Vậy GTLN của B = 15 <=> x=7
Tk mk nha
a) A=|1-x|+8
=> A-8=|1-x|
=> Để |1-x| có giá trị nhỏ nhất thì A-8=0
=> 1-x =0 => -x=0-1 => -x= -1 => x=1
=> giá trị nhỏ nhất của biểu thức A là:
|1-1|+8=0+8=8
Vậy giá trị nhỏ nhất của biểu thức A là 8
2: B=|x+5|-|x-2|<=|x+5-x+2|=7
Dấu = xảy ra khi -5<=x<=2
Ta có : \(\left|x\right|+\left|8-x\right|\ge\left|x+8-x\right|=\left|8\right|=8\)
Vậy MinA = 8
\(A=\left|x\right|+\left|8-x\right|\ge\left|x+8-x\right|=\left|8\right|=8\)
\(\Rightarrow A_{Min}=8\Leftrightarrow x\ge0\)
cảm ơn bạn