Tìm GTNN
\(A=x^2+4x+7\)
\(B=2x^2+x\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)A=4(x+11/8)^2 -153/16
Min A=-153/16 khi x=-11/8
b)B=3(x-1/3)^2 -4/3
Min B=-4/3 khi x=1/3
Bài 1:
a) \(A=4x^2+11x-2=\left(4x^2+11x+\dfrac{121}{16}\right)-\dfrac{153}{16}=\left(2x+\dfrac{11}{4}\right)^2-\dfrac{153}{16}\ge-\dfrac{153}{16}\)
\(minA=-\dfrac{153}{16}\Leftrightarrow x=-\dfrac{11}{8}\)
b) \(B=3x^2-2x-1=3\left(x^2-\dfrac{2}{3}x+\dfrac{1}{9}\right)-\dfrac{4}{3}=3\left(x-\dfrac{1}{3}\right)^2-\dfrac{4}{3}\ge-\dfrac{4}{3}\)
\(minB=-\dfrac{4}{3}\Leftrightarrow x=\dfrac{1}{3}\)
Bài 2:
a) \(A=-x^2+3x-1=-\left(x^2-3x+\dfrac{9}{4}\right)+\dfrac{5}{4}=-\left(x-\dfrac{3}{2}\right)^2+\dfrac{5}{4}\le\dfrac{5}{4}\)
\(maxA=\dfrac{5}{4}\Leftrightarrow x=\dfrac{3}{2}\)
b) \(B=-x^2-4x+7=-\left(x^2+4x+4\right)+11=-\left(x+2\right)^2+11\le11\)
\(maxB=11\Leftrightarrow x=-2\)
1.
$x(x+2)(x+4)(x+6)+8$
$=x(x+6)(x+2)(x+4)+8=(x^2+6x)(x^2+6x+8)+8$
$=a(a+8)+8$ (đặt $x^2+6x=a$)
$=a^2+8a+8=(a+4)^2-8=(x^2+6x+4)^2-8\geq -8$
Vậy $A_{\min}=-8$ khi $x^2+6x+4=0\Leftrightarrow x=-3\pm \sqrt{5}$
2.
$B=5+(1-x)(x+2)(x+3)(x+6)=5-(x-1)(x+6)(x+2)(x+3)$
$=5-(x^2+5x-6)(x^2+5x+6)$
$=5-[(x^2+5x)^2-6^2]$
$=41-(x^2+5x)^2\leq 41$
Vậy $B_{\max}=41$. Giá trị này đạt tại $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$
a.
\(A=\dfrac{2013}{x^2}-\dfrac{2}{x}+1=2013\left(\dfrac{1}{x}-\dfrac{1}{2013}\right)^2+\dfrac{2012}{2013}\ge\dfrac{2012}{2013}\)
Dấu "=" xảy ra khi \(x=2013\)
b.
\(B=\dfrac{4x^2+2-4x^2+4x-1}{4x^2+2}=1-\dfrac{\left(2x-1\right)^2}{4x^2+2}\le1\)
\(B_{max}=1\) khi \(x=\dfrac{1}{2}\)
\(B=\dfrac{-2x^2-1+2x^2+4x+2}{4x^2+2}=-\dfrac{1}{2}+\dfrac{\left(x+1\right)^2}{2x^2+1}\ge-\dfrac{1}{2}\)
\(B_{max}=-\dfrac{1}{2}\) khi \(x=-1\)
`A=x^2-2x+5`
`=x^2-2x+1+4`
`=(x-1)^2+4>=4`
Dấu "=" `<=>x=1`
`B=4x^2+4x+3`
`=4x^2+4x+1+2`
`=(2x+1)^2+2>=2`
Dấu "=" xảy ra khi `x=-1/2`
`C=9x^2-6x+7`
`=9x^2-6x+1+6`
`=(3x-1)^2+6>=6`
Dấu '=' xảy ra khi `x=1/3`
`D=5x^2+3x+8`
`=5(x^2+3/5x)+8`
`=5(x^2+3/5x+9/100-9/100)+8`
`=5(x+3/10)^2+151/20>=151/20`
Dấu "=" xảy ra khi `x=-3/10`
\(A=x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\)
Ta có: \(\left(x-1\right)^2\ge0\Rightarrow\left(x-1\right)^2+4\ge4\Rightarrow A_{min}=4\) khi \(x=1\)
\(B=4x^2+4x+3=4x^2+4x+1+2=\left(2x+1\right)^2+2\)
Ta có: \(\left(2x+1\right)^2\ge0\Rightarrow\left(2x+1\right)^2+2\ge2\Rightarrow B_{min}=2\) khi \(x=-\dfrac{1}{2}\)
\(C=9x^2-6x+7=9x^2-6x+1+6=\left(3x-1\right)^2+6\)
Ta có: \(\left(3x-1\right)^2\ge0\Rightarrow\left(3x-1\right)^2+6\ge6\Rightarrow C_{min}=6\) khi \(x=\dfrac{1}{3}\)
\(D=5x^2+3x+8\Rightarrow5\left(x^2+2.x.\dfrac{3}{10}+\dfrac{9}{100}\right)+\dfrac{151}{20}=5\left(x+\dfrac{3}{10}\right)^2+\dfrac{151}{20}\)
Ta có: \(5\left(x+\dfrac{3}{10}\right)^2\ge0\Rightarrow5\left(x+\dfrac{3}{10}\right)^2+\dfrac{151}{20}\ge\dfrac{151}{20}\)
\(\Rightarrow D_{min}=\dfrac{151}{20}\) khi \(x=-\dfrac{3}{10}\)
Bài 1: Tìm x: (2x-6)^3 + (5-x)^3 + (1-x)^3 = 0
Bài 2: Tìm GTNN :
A= x^2 -2x -4
B= x^2 -x +5
C= 4x^2 +2x -9
D= 2x^2 -4x +7
Giúp tớ với, tớ đang cần gấp
A=x2-4x+7
= x2-4x+4+3
= (x-2)2+3
Vì (x+2)2>/ 0
Nên (x-2)2+3>/3
Vậy MAX của A=3 khi x-2=0 => x=2
Bài 2: Tìm GTNN :
A= x^2 -2x -4 = x^2 - 2x + 1-1 -4 = (x-1)^2 - 5
A >/ -5
MinA = -5
B= x^2 -x +5= x^2 - x + 1/4 - 1/4 +5 = (x-1/2)^2 + 19/4
B >/ 19/4
MinB = 19/4
C= 4x^2 +2x -9= (2x)^2 + 2x + 1/4 - 1/4 -9 = (2x+1/2)^2 - 37/4
C >/ -37/4
MinC= -37/4
\(D=2x^2-4x+7=\left(\sqrt{2}x\right)^2-2\cdot\sqrt{2}x\cdot\sqrt{2}+2-2+7=\left(\sqrt{2}x-\sqrt{2}\right)^2+5\)
D >/ 5
MinD = 5
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
tôi mong các bn ko làm như vậy
A = x2 - 4x + 7
= x( x - 4 ) + 7
Vì x( x - 4 ) \(\le\)0
=> Để x( x - 4 ) + 7 \(\le\)7
=> A \(\ge\)- 7
Vậy GTNN A = - 7 khi x( x - 4 ) = - 7
Ta có : A = x2 - 4x + 7
= x2 - 4x + 4 + 3
A = (x - 2)2 + 3
Vì : \(\left(x-2\right)^2\ge0\forall x\)
Nên : A = (x - 2)2 + 3 \(\ge3\forall x\)
Vậy Amin = 3 khi x = 2
\(A=x^2+4x+7\)
\(=\left(x+2\right)^2+3\ge3\)
Vậy MinA = 3 dấu" =" xảy ra khi và chỉ khi x+2=0 <=> x=-2
\(A=x^2+4x+7=x^2+4x+4+3\)
\(=\left(x+2\right)^2+3\ge3\)
\(\text{Dấu "=" xảy ra}\Leftrightarrow x+2=0\Leftrightarrow x=-2\)
\(\text{Vậy }A_{min}=3\Leftrightarrow x=-2\)
\(B=2x^2+x=x^2+\left(x^2+x+\frac{1}{4}\right)-\frac{1}{4}\)
\(=x^2+\left(x+\frac{1}{2}\right)^2-\frac{1}{4}\ge0+\left(\frac{1}{2}\right)^2-\frac{1}{4}=0\)
\(\text{Dấu "=" xảy ra }\Leftrightarrow x=0\)
\(\text{Vậy}\)\(B_{min}=0\Leftrightarrow x=0\)
Lưu ý: Ở câu b, rất nhiều bạn dễ bị lừa \(x^2+\left(x+\frac{1}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)luôn . Khi đó đáp án sẽ sai vì dấu "=" ko xảy ra. Làm như mình thì đúng 100%