1. Cho \(\Delta ABC\) vuông tại A , đường cao AH . Biết AB = 3cm , AC = 4cm . Tính :
a. BC , AH , HB , HC
b. Tính góc \(\widehat{B}\) và góc \(\widehat{C}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tam giác ABC vuông tại A , theo HTL :
AH^2 = HB .HC
=> 4^2 = 2 . HC = > HC = 16 : 2 = 8 cm
BC = HB + HC = 2 + 8 = 10
AB^2 = BH . BC = 2.10 = 20
=> AB = căn 20
AC^2 = HC . BC = 8 x 10 =80
=> AC = căn 80
TAm giác ABC vuông tại A
=> SIn B = AC/BC = căn 80 /10 => B = sin-1 ( căn 80 / 10) = 63 độ 26'
=> C = 90 - B = 90 - 63 độ 26 phút
Giải
Tam giác ABC vuông tại A , theo HTL :
\(AH^2=HB.HC\)
\(\Rightarrow4^2=2HC\Leftrightarrow HC=16\div2=8\left(cm\right)\)
\(\Rightarrow BC=HB+HC=2+8=10\)
\(AB^2=BH.BC=2.10=20\)
\(\Rightarrow AB=\sqrt{20}\)
\(AC^2=HC.BC=8.10=80\)
\(\Rightarrow AC=\sqrt{80}\)
Tam giác ABC vuông tại A
\(\Rightarrow\) SIn B = \(\frac{AC}{BC}\) = \(\sqrt{\frac{8}{10}}\)\(\Rightarrow\) \(B=sin^{-1}\) \(\sqrt{\frac{80}{10}}=63^026'\)
\(\Rightarrow C=90-B=90-63^026'\)
Vì ΔABC vuông tại A
==> BC2 = AC2 +AB2 ( Định lý Pitago )
BC2 = 42 + 32
BC2 = 27
==> BC = √27
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=3^2+4^2=25\)
hay BC=5(cm)
Vậy: BC=5cm
c: Xét ΔAHB vuông tại H có HM là đường cao
nên \(AM\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HN là đường cao
nên \(AN\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)
a, Xét Δ ABC, có :
\(AB^2+AC^2=BC^2\) (định lí Py - ta - go)
=> \(3^2+4^2=BC^2\)
=> \(25=BC^2\)
=> BC = 5 (cm)
Xét Δ ABC vuông tại A, theo hệ thức lượng có :
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
=> \(\dfrac{1}{AH^2}=\dfrac{1}{3^2}+\dfrac{1}{4^2}\)
=> AH = 2,4 cm
b, Xét Δ ABD, có :
HD = HB (gt)
AH là đường cao
=> Δ ABD cân
a: BC=căn 3^2+4^2=5cm
HB=AB^2/BC=1,8cm
HC=5-1,8=3,2cm
AH=3*4/5=2,4cm
b:
1: ΔAHB vuông tại H có HE là đường cao
nên AE*EB=EH^2
2: ΔHAC vuông tại H có HF là đường cao
nên AF*FC=HF^2
=>AE*EB+AF*FC=HE^2+HF^2=EF^2=AH^2
a, Xét tam giác HAB có: AB2 = AH2 + BH2 => AB2 = 42 + 22 => AB2 = 16 + 4 = 20 => AB = \(\sqrt{20}\)
Xét tam giác HAC có: AB2 = HA2 + HC2 => AC2 = 42 + 82 => AC2 = 16 + 64 = 80 => AC = \(\sqrt{80}\)
b, Ta có: AB < AC\(\left(\sqrt{20}< \sqrt{80}\right)\)
=>\(\widehat{B}< \widehat{C}\:\)(Quan hệ giữa cạnh và góc đối diện)
Á mk nhầm nha \(\widehat{C}< \widehat{B}\)
#Hk_tốt
#Ngọc's_Ken'z
Mình giải xong rồi nhưng chưa chụp được. TỐi mình đi học về chụp cho nhé
ok