Tìm x biết:
\(\frac{98}{81}\times\frac{x}{98}=\frac{4802}{2187}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x+1}{99}+\frac{x+2}{98}+\frac{x+3}{97}+\frac{x+4}{96}=-4\)
\(\Rightarrow\left(\frac{x+1}{99}+1\right)+\left(\frac{x+2}{98}+1\right)+\left(\frac{x+3}{97}+1\right)+\left(\frac{x+4}{96}+1\right)=0\)
\(\Rightarrow\frac{x+100}{99}+\frac{x+100}{98}+\frac{x+100}{97}+\frac{x+100}{99}=0\)
\(\Rightarrow\left(x+100\right)\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}+\frac{1}{98}\right)=0\)
\(\Rightarrow x+100=0\)
\(\Rightarrow x=-100\)
\(a.172x^2-7^9=2^{-3}.98^3=117649\)
\(172x^2=117649+7^9=40471256\)
\(x^2=40471256:172=235298\)
\(x=\sqrt{235298}=485.07......\)
\(\frac{x+1}{98}+\frac{x+2}{97}=\frac{x+3}{96}+\frac{x+4}{95}\)
=> \(\left(\frac{x+1}{98}+1\right)+\left(\frac{x+2}{97}+1\right)=\left(\frac{x+3}{96}+1\right)+\left(\frac{x+4}{95}+1\right)\)
=> \(\frac{x+99}{98}+\frac{x+99}{97}-\frac{x+99}{96}-\frac{x+99}{95}=0\)
=> \(\left(x+99\right)\left(\frac{1}{98}+\frac{1}{97}-\frac{1}{96}-\frac{1}{95}\right)=0\)
=> \(x+99=0\) (Vì: \(\frac{1}{98}+\frac{1}{97}-\frac{1}{96}-\frac{1}{95}\ne0\) )
=>\(x=-99\)
Ta có :
\(\frac{x+1}{98}+\frac{x+2}{97}=\frac{x+3}{96}+\frac{x+4}{95}\)
\(\Rightarrow\) \(\left(\frac{x+1}{98}+1\right)+\left(\frac{x+2}{97}+1\right)=\left(\frac{x+3}{96}+1\right)+\left(\frac{x+4}{95}+1\right)\)
\(\Rightarrow\frac{x+99}{98}+\frac{x+99}{97}=\frac{x+99}{96}+\frac{x+99}{95}\)
\(\Rightarrow\frac{x+99}{98}+\frac{x+99}{97}-\frac{x+99}{96}-\frac{x+99}{95}=0\)
\(\Rightarrow\left(x+99\right).\left(\frac{1}{98}+\frac{1}{97}-\frac{1}{96}-\frac{1}{95}\right)=0\)
Vì \(\frac{1}{96}+\frac{1}{97}< \frac{1}{96}+\frac{1}{95}\)
\(\Rightarrow\) \(\frac{1}{96}+\frac{1}{97}< \frac{1}{96}+\frac{1}{95}\ne0\)
Nên \(x+99=0\)
\(\Rightarrow x=0-99\)
\(\Rightarrow x=-99\)
Vậy : \(x=-99\)
\(\frac{x-1}{99}+\frac{x-2}{98}+\frac{x-5}{95}=3+\frac{1}{99}+\frac{1}{98}+\frac{1}{95}\)
\(\Leftrightarrow\frac{x-1}{99}+\frac{x-2}{98}+\frac{x-5}{95}=1+\frac{1}{99}+1+\frac{1}{98}+1+\frac{1}{95}\)
\(\Leftrightarrow\frac{x-1}{99}+\frac{x-2}{98}+\frac{x-5}{95}=\frac{100}{99}+\frac{99}{98}+\frac{96}{95}\)
\(\Leftrightarrow\left(\frac{x-1}{99}-\frac{100}{99}\right)+\left(\frac{x-2}{98}-\frac{99}{98}\right)+\left(\frac{x-5}{95}-\frac{96}{95}\right)=0\)
\(\Leftrightarrow\frac{x-101}{99}+\frac{x-101}{98}+\frac{x-101}{95}=0\)
\(\Leftrightarrow\left(x-101\right).\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{95}\right)=0\)
\(\Leftrightarrow x-101=0\)
\(\Leftrightarrow x=101\)
\(\frac{x-1}{99}+\frac{x-2}{98}+\frac{x-5}{95}=3+\frac{1}{99}+\frac{1}{98}+\frac{1}{95}\)
\(\Leftrightarrow\frac{x-1}{99}+\frac{x-2}{98}+\frac{x-5}{95}=1+\frac{1}{99}+1+\frac{1}{98}+1+\frac{1}{95}\)
\(\Leftrightarrow\frac{x-1}{99}+\frac{x-2}{98}+\frac{x-5}{95}=\frac{100}{99}+\frac{99}{98}+\frac{96}{95}\)
\(\Leftrightarrow\frac{x-1}{99}+\frac{x-2}{98}+\frac{x-5}{95}-\frac{100}{99}-\frac{99}{98}-\frac{96}{95}=0\)
\(\Leftrightarrow\left(\frac{x-1}{99}-\frac{100}{99}\right)+\left(\frac{x-2}{98}-\frac{99}{98}\right)+\left(\frac{x-5}{95}-\frac{96}{95}\right)=0\)
\(\Leftrightarrow\frac{x-101}{99}+\frac{x-101}{98}+\frac{x-101}{95}=0\)
\(\Leftrightarrow\left(x-101\right)\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{95}\right)=0\)
Do \(\frac{1}{99}+\frac{1}{98}+\frac{1}{95}\ne0\)
Mà \(x-101=0\Leftrightarrow x=101\)
Vậy x = 101
Ta có :
\(\frac{x+1}{99}+\frac{x+2}{98}+\frac{x+3}{97}+\frac{x+4}{96}=-4\)
\(\Leftrightarrow\frac{x+1}{99}+1+\frac{x+2}{98}+1+\frac{x+3}{97}+1+\frac{x+4}{96}+1=-4+4\)
\(\Leftrightarrow\frac{x+100}{99}+\frac{x+100}{98}+\frac{x+100}{97}+\frac{x+100}{96}=0\)
\(\Rightarrow\left(x+100\right).\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}+\frac{1}{96}\right)=0\)
Vì \(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}+\frac{1}{96}\ne0\)nên \(x+100=0\)
\(\Rightarrow x=0-100=-100\)