Chứng minh rằng
n^4 + 2n^3 - n^2 -2n chia hết cho 2( n thuộc z)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của luu thi thao ly - Toán lớp 8 - Học toán với OnlineMath
a) Thay m = -1 và n = 2 ta có:
3m - 2n = 3(-1) -2.2 = -3 - 4 = -7
b) Thay m = -1 và n = 2 ta được
7m + 2n - 6 = 7.(-1) + 2.2 - 6 = -7 + 4 - 6 = -9.
\(A=\left(n-2\right)\left(n-3\right)\left(n+1\right)\left(2n+1\right)\)
Vì n-2;n-3 là hai số liên tiếp
nên (n-2)(n-3) chia hết cho 2
=>A chia hết cho 2
TH1: n=3k
=>n-3=3k-3 chia hết cho 3
TH2: n=3k+1
=>2n+1=6k+2+1=6k+3 chia hết cho 3
TH3: n=3k+2
=>n+1=3k+3 chia hết cho 3
=>A chia hết cho 6
a/ (4n - 2)(4n + 8) = 2(2n - 1)4(n + 2)= 8(2n - 1)(n+2) cái này chia hết cho 8
a)\(n\left(2n-3\right)-2n\left(n+1\right)=n\left(2n-3\right)-n\left(2n+2\right)=n\left(2n-3-2n-2\right)\)
\(=n\left(-5\right)=-5n\) chia hết cho 5 với n thuộc Z
b)\(\left(n-1\right)\left(n+4\right)-\left(n-4\right)\left(n+1\right)=\left(n^2+3n-4\right)-\left(n^2-3n-4\right)\)
\(=n^2+3n-4-n^2+3n+4=6n\) chia hết cho 6 với n thuộc Z
Câu hỏi của luu thi thao ly - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo link trên nhé!
\(\left(2n+1\right)\left(n^2-3n-1\right)-2n^3+1\)
\(=2n^3-6n^2-2n+n^2-3n-1-2n^3+1\)
\(=-5n^2-5n=-5n\left(n+1\right)\)
Vì n và n+1 là 2 số nguyên liên tiếp nên n(n+1) chia hết cho 2 \(=>-5n\left(n+1\right)⋮10\)
Vậy (2n+1)(n^2-3n-1)-2n^3+1 chia hết cho 10 với mọi n đều thuộc Z
\(n^4+2n^3-n^2-2n\)
\(=n^3\left(n+2\right)-n\left(n+2\right)\)
\(=\left(n+2\right)\left(n^3-n\right)\)
\(=n\left(n+2\right)\left(n^2-1\right)\)
\(=\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)
Dễ thấy n-1; n; n+1; n+2 là 4 số liên tiếp => có 2 số chẵn => tích của 4 số chia hết cho 2
=> đpcm