Tìm hệ số của \(x^2y^2\)trong khai triển \(\left(2x+3y^2\right)^3\)
GIÚP MÌNH VỚI MAI MÌNH ĐI HỌC RỒI
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm hệ số của \(x^2y^2\)trong khai triển \(\left(2x+3y^2\right)^3\)
GIÚP MÌNH VỚI MAI MÌNH ĐI HỌC RỒI
Khi khai triển \(\left(a+b\right)^n\)thì nó có chứa các hạng tử \(m\cdot a^{n-k}\cdot b^k\)và m được xác định bằng tam giác Paxcan ( Tam giác Pascal – Wikipedia tiếng Việt )
Theo đề bài ta có n = 3
=> các hệ số lần lượt của nó là 1 - 3 - 3 - 1
Áp dụng khai triển \(\left(2x+3y^2\right)^3=8x^3+36x^2y^2+54xy^4+27y^6\)
Vậy ta có hệ số của x2y2 là 36
Ta thấy A gồm có 99 số hạng nên ta nhóm mỗi nhóm 3 số hạng.
Ta có: A = 1 + 5 + 52 + 53 + 54 + 55 +...+ 597 + 598 + 599
= (1 + 5 + 52 )+ (53 + 54 + 55 )+...+( 597 + 598 + 599 )
=(1 + 5 + 52 )+ 53(1 + 5 + 52 ) +...+ 597(1 + 5 + 52 )
= ( 1 + 5 + 52)(1 + 53+....+597)
= 31(1 + 53+....+597)
Vì có một thừa số là 31 nên A chia hết cho 31.
P/s Đừng để ý câu trả lời của mình
\(\left(2x+3y^2\right)^3\)
\(=8x^3+36x^2y^2+54xy^4+27y^6\)
Xét thấy hệ số của \(x^2y^2\)khi khai triển là 36
Vậy hệ số của \(x^2y^2\)khi khai triển \(\left(2x+3y^2\right)^3\)là \(36\)